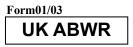
Form10/00


UK ABWR

Document ID	:	GA91-9101-0101-01000
Document Number		XE-GD-0214
Revision Number	:	<u>C</u>

UK ABWR Generic Design Assessment

Generic PCSR Chapter 1 : Introduction

Page ii/ii

DISCLAIMERS

Proprietary Information

This document contains proprietary information of Hitachi-GE Nuclear Energy, Ltd. (Hitachi-GE), its suppliers and subcontractors. This document and the information it contains shall not, in whole or in part, be used for any purpose other than for the Generic Design Assessment (GDA) of Hitachi-GE's UK ABWR. This notice shall be included on any complete or partial reproduction of this document or the information it contains.

<u>Copyright</u>

No part of this document may be reproduced in any form, without the prior written permission of Hitachi-GE Nuclear Energy, Ltd.

Copyright (C) 2017 Hitachi-GE Nuclear Energy, Ltd. All Rights Reserved.

GA91-9101-0101-01000 Rev.C

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

i

Table of Contents

Executive Summary		ii
1.1	Introduction	1.1-1
1.1.1	Background	1.1-1
1.1.2	Document Structure	
1.2	Purpose and Scope of Chapter 1	1.2-1
1.2.1	Purpose	1.2-1
1.2.2	Scope	1.2-1
1.3	Purpose of the Generic Design Assessment (GDA)	1.3-1
1.4	Structure and Contents of the UK ABWR Generic PCSR	1.4-1
1.4.1	PCSR Documentation	1.4-1
1.4.2	Approach to Claim-Argument-Evidence (CAE)	1.4-5
1.4.3	Fault Fault Based and System Based View of the UK ABWR Safety Case	1.4-6
1.4.4	Structure and Contents	1.4-8
1.4.5	Scope	1.4-11
1.5	PCSR User Guide and Route Map	1.5-1
1.6	Safety Assessments and Achievements of the ABWR Design Prior to the UK ABWR	16-1
1.7	Abbreviations and Acronyms List	1.7-1
1.8	Conclusions	1.8-1
1.9	References	1.9 - 1
Appendix	x A: Abbreviations and Acronyms List	A-1

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

Executive Summary

The Generic Pre-Construction Safety Report (Generic PCSR) is a central document within the process of the Generic Design Assessment (GDA), through which Hitachi-GE Nuclear Energy, Ltd. (Hitachi-GE) outlines the reasons why it believes that the UK Advanced Boiling Water Reactor (UK ABWR) can be safely operated in the UK. Specifically this PCSR provides substantiation of the following overarching safety case claim:

A UK ABWR constructed on a generic site within the United Kingdom (UK), meets all safety targets for the public, workers and the environment, and satisfies the principle that all risks are as low as reasonably practicable (ALARP) for all operating and fault conditions.

The submission of the UK ABWR Generic PCSR to the UK Regulators marks a significant milestone in the GDA process.

This introductory chapter does not contain technical summaries of the reactor design itself. These can be found on the UK ABWR website (www.hitachi-hgne-uk-abwr.com), which was launched at the start of GDA Step 2, and in Generic PCSR Chapter 9. Rather, this chapter gives an overview of the contents of the Generic PCSR and explains Hitachi-GE's approach to meeting regulatory expectations for GDA. It outlines the hierarchy of the Generic PCSR documentation; breaking down, to some extent, the types of information it contains. It is, in effect, a readers' guide to the Generic PCSR and an indicative overview of the type of information it contains. It also includes a list of abbreviations and acronyms that are often referred to in the other Generic PCSR chapters as well as in lower tier PCSR documentation.

By its very nature, Chapter 1 is technical and is based on regulatory terminology, such as, the Claims, Arguments, Evidence approach that has been adopted in the safety case for many topic areas. There is also an element of assumed-knowledge, based on information contained in Steps 1, 2, 3 of UK ABWR GDA submissions which Hitachi-GE has published for the UK ABWR. However, when read in conjunction with the appendices, this chapter provides an overview of the process, structure and approach for development of Hitachi-GE's Generic PCSR and related GDA submissions as a whole.

Chapter 1 also provides a route map of the Generic PCSR by providing brief summaries of the purpose and roles of each of the PCSR chapters.

1. Introduction Executive Summary Ver. 0

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

1.1 Introduction

The Generic Pre-Construction Safety Report (Generic PCSR) is a key document and submission within Generic Design Assessment (GDA) that outlines the reasons supporting the top level claim that Hitachi-GE believes "the UK Advanced Boiling Water Reactor (UK ABWR) constructed on a generic site within the United Kingdom (UK), can be operated safely under all operating and fault conditions."

The Generic PCSR has been submitted at the end of GDA Step 2, 3. The final version of PCSR Rev. C planned in Step 4 marks a significant milestone in GDA and paves the way for ONR's decision on whether or not to grant a Design Acceptance Confirmation (DAC).

Generic PCSR Chapter 1, Introduction, provides an overview of the Generic PCSR, explains the approach for and hierarchy of UK ABWR safety cases, provides a route map to the PCSR by providing summaries of the contents of each of the Generic PCSR chapters.

1.1.1 <u>Background</u>

The top level claim is underpinned by the following high level claims:

- The UK ABWR design is based on sound international practices and over 40 years of Hitachi-GE experience in design, construction and maintenance of Boiling Water Reactors [Ref-5], [Ref-7] and [Ref-18] section 1.6.
- All credible faults and hazards have been identified and assessed.
- The safety functions of the UK ABWR are clearly identified and understood.
- The design of the UK ABWR includes suitable and sufficient Structures, Systems and Components (SSCs) to deliver the essential safety functions.
- The Hitachi-GE GDA Safety Management Arrangements are adequate.
- The risks associated with the design, construction, commissioning, operation, decommissioning of the UK ABWR are ALARP.

The first of these high-level claims is supported by Chapter 28 of this PCSR, which traces the development of the UK ABWR from the earliest Boiling Water Reactors (BWRs) and the programme of Advanced Boiling Water Reactors (ABWRs) in Japan and shows that, at each stage of development, the most appropriate technology available has been deployed; the design has been informed by the most up-to-date operational experience; and that each development has progressively reduced potential risks.

The second of these high level claims (credible faults and hazards have been identified and assessed) is supported by the work on design basis accidents, probabilistic safety analysis and Beyond Design Basis and Severe Accident Analysis (Chapters 24 to 26), and the chapters on External and Internal Hazards (Chapters 6 and 7 respectively). The hazards are grouped in to bounding faults that are used to link the hazards chapters, analysis chapters, and systems chapters as described in section 1.4.2. These chapters demonstrate the tolerance of the UK ABWR to faults and hazards, and conclude that all relevant risk targets are met. Radiological safety during normal operations is discussed in Chapter 20, and confirmed to meet all relevant targets.

UK ABWR

Generic Pre-Construction Safety Report Revision C

The third high level claim is that Safety Functions are clearly identified and understood. The UK ABWR safety case uses a rigorous system of safety claims (Safety Functional Claims (SFCs), Safety Properties Claims (SPCs) and Human Based Safety Claims (HBSCs)) which clearly define the safety requirements. This enables a clear link to be made between safety requirements and the SSCs that deliver them. The SSC requirements are primarily defined and identified within the 'Systems' chapters in the PCSR (principally Chapters 10 to 19).

The fourth high level claim is that the UK ABWR includes suitable and sufficient SSCs to deliver the required safety functions. This claim is supported by a range of 'Systems' chapters within the PCSR covering all SSCs that are important to safety. These chapters (principally Chapters 10 to 19) provide descriptions of plant structures, systems and components, list the associated safety claims and provide links to where more detailed safety justification can be found for each SSC. The delivery of the functions is supported by aspects of human machine interface, and human factors are provided through Chapters 21 and 27, respectively.

The fifth high level claim is supported by Chapter 4, which describes how Hitachi-GE's generic safety management arrangements contribute to ensuring that the required levels of nuclear safety will be delivered throughout the lifetime of the UK ABWR (design, construction, commissioning, operation, and decommissioning). It also describes how these safety management arrangements will support the future operator and licensee in meeting safety and environment limits and conditions, including describing the arrangements for sharing knowledge of the UK ABWR technology.

The final high level claim that risks have been reduced ALARP is underpinned by Chapter 28. The overall ALARP case in Chapter 28 draws on evidence from across the wider safety case. To improve the clarity of this process, all relevant chapters of the PCSR include a section titled 'Summary of ALARP Justification' which aims to capture specific examples of how the ALARP principle has been applied for that topic area.

1.1.2 Document Structure

Chapter 1 in itself will not provide specific supporting information and/or justifications of these arguments, but will provide high level pointers to where these arguments are supported and justified by the information provided in the Generic PCSR Chapters 2 to 32, and the supporting information in each of these chapters. The overall structure of the Generic PCSR, which provides these high level pointers as explained in section 1.4.

This chapter includes the following sections:

Section 1.1 Introduction: This section introduces the PCSR generally and Chapter 1 specifically. It also presents an overview of the high level claims for the UK ABWR, including a top level claim, high level sub-claims and links to where supporting arguments can be found within the PCSR.

Section 1.2 Purpose and Scope of Chapter 1: This section sets out the purpose of the chapter and identifies what is included in the scope of the chapter and what is excluded.

Section 1.3 Purpose of the Generic Design Assessment (GDA): This section describes the GDA process with reference to corresponding regulatory guidance. This section also describes the UK ABWR's achievements through the GDA process.

Section 1.4 Structure and Contents of the UK ABWR Generic PCSR: This section describes the structure of the Generic PCSR. It explains the hierarchy of documentation that make up the wider

UK ABWR

Generic Pre-Construction Safety Report Revision C

safety case and outlines what kind of information is provided in each level of documentation (e.g. top level PCSR and supporting lower tier documents). This section also describes Hitachi-GE's approach to Claim-Argument-Evidence for GDA and describes the key elements developed to assist production of a clear, consistent, traceable and manageable safety case (e.g. Safety Case Development Manual (SCDM), Nuclear Safety and Environmental Design Principles (NSEDPs)). This section also describes the scope of the Generic PCSR.

Section 1.5 PCSR User Guide and Route Map: This section describes what kind of information can be found in each chapter of the PCSR. It provides a link or 'route map' to where information can be found within the PCSR. This section also describes the generic structure within each chapter. This section also refers to a technical summary of the contents of each chapter, which is included in each of the chapters as Executive Summary.

Section 1.6 Safety Assessments and Achievements of the ABWR Design Prior to the UK ABWR: This section is a brief summary of the licensing and construction achievements of the ABWR plant design prior to the UK ABWR.

Section 1.7 Abbreviations and Acronyms List: This section refers to the list of abbreviations and acronyms that will often be referred to in the Generic PCSR (this list is included as Appendix A).

1.2 Purpose and Scope of Chapter 1

1.2.1 <u>Purpose</u>

This document provides an introduction to the Generic PCSR for the UK ABWR. Its objectives are to:

- Describe the overall purpose and scope of the PCSR.
- Provide summary of the GDA assessment process and the key achievements accomplished by the UK ABWR.
- Present an overview of the high level safety claims for UK ABWR, by setting out the top level claim and the underlying sub claims that a UK Advanced Boiling Water Reactor (UK ABWR) can be operated safely in the UK.
- Describe the GDA process with reference to corresponding regulator guidance, and provide a summary of the assessment results of previous GDA Steps. Provide a high level summary and link to the specific chapters of the PCSR that will demonstrate that the sub claims are substantiated. This provides a route map for the safety case.
- Describe the high level principles, objectives and strategic approach used by Hitachi-GE to develop the Generic PCSR. This includes describing how a robust and traceable Claim-Argument-Evidence approach has been applied to the PCSR.
- Describe the hierarchical structure of GDA documentation (e.g. Level 1, Level2 and Level 3) and describe the main building blocks of the safety case (e.g. Topic Reports, Basis of Safety Case).
- Provide a description of the process undertaken to define the GDA scope.
- Provide a summary of licensing and construction achievements of the ABWR plant design prior to the UK ABWR to support the overall safety justification for UK ABWR.
- Provide a list of abbreviations and acronyms that are often be referred to in the Generic PCSR documentation as well as lower tier documentation.

1.2.2 Scope

Chapter 1 is an introduction to the Generic PCSR, and provides an overview of what can be found in the other chapters of the PCSR. Chapter 1 does not include specific supporting information and/ or justification of the safety arguments for the UK ABWR, but provides pointers to where supporting arguments are developed and further justification can be found in Chapters 2 to 32. The overall scope of the Generic PCSR is described in Section 1.4.4

1.3 Purpose of the Generic Design Assessment (GDA)

Generic Design Assessment (GDA) is a voluntary step toward obtaining consent to build a nuclear power plant in the UK. The GDA process has been adopted by the Office for Nuclear Regulation (ONR) and the Environment Agency, and is described in detail in [Ref-1] and [Ref-2].

As described in detail in, "New nuclear reactors: Generic Design Assessment Guidance to Requesting Parties" (GDA Guidance) [Ref-1], the objective of the GDA is to allow the Regulators to undertake an assessment of the design significantly in advance of planned construction. This allows them to identify any possible shortfalls with regard to the safety, security and environmental requirements in the UK in relation to the design, which would require design changes and modifications. This process not only contributes to the safety of the plant but also reduces the risk of project delays at a later date.

Upon successful completion of the GDA assessments, the Requesting Party (RP) is issued with a Design Acceptance Confirmation (DAC) (which is valid for 10 years from the date of issue) from ONR, and a Statement of Design Acceptability (SoDA) from the Environment Agency.

GDA is a four step process, and each constitutes different aspects of assessment. These are shown in summary below, while the detailed aspects and processes are shown fully in the GDA Guidance [Ref-1].

Step 1: Preparation and submission of preliminary safety case

This is the initial engagement between the ONR, Environment Agency and the RP, Hitachi-GE, to initiate the GDA process. During this step, the RP is expected to develop an understanding of the technical and project management processes and requirements of the GDA. During this step, the UK Regulators make a decision on whether the RP is ready to proceed to the second step of the GDA process. The GDA Step 1 assessments for the UK ABWR were carried out between April 2013 and December 2013.

Step 2: Fundamental design, safety and security case claims overview

Step 2 involves assessment of the fundamental safety cases, security and environmental claims made by the RP, to confirm the soundness of the design and to identify any significant shortfalls in the design. In this step, the UK Regulators initiate a comprehensive assessment of the proposed design. Hitachi-GE submitted the UK ABWR Preliminary Safety Reports (PSRs) to ensure that the Regulators had sufficient information to carry out the assessments.

Additionally, during the course of Step 2, Hitachi-GE responded to inquiries, such as Regulatory Queries (RQs) and Regulatory Observations (ROs), issued by the Regulators.

At the end of Step 2, Hitachi-GE produced the initial Generic PCSR which comprised a summary of claims in the corresponding Level 2 and 3 documentation, and brief justification of the claims. The Step 2 Generic PCSR also took into account comprehensive interactions with the Regulators during the entire Step 2. A key interaction was in the development and agreement of the structure of the

Form05/01

UK ABWR

Generic PCSR, where the RP and the regulators agreed on a structure that was not only sufficient for Step 2 but also that could readily scale well to accommodate Step 3 and 4 assessments.

At this stage the Regulators also confirmed that they had not identified any reason why the design's compliance with the legal duty in Great Britain to ensure that risks to workers and the public arising from the operation of a power station are reduced to 'So Far As Is Reasonably Practicable' (SFAIRP) or ALARP could not be demonstrated.

The second step also involved the assessment of relevant quality assurance arrangements to support the development of safety cases and claims documentation for the related design. Specifically, the regulatory audit and the readiness review of the relevant project arrangements and quality assurance arrangements concluded that Hitachi-GE had in place the necessary arrangements to cover Step 2 and the arrangements were applicable or could be readily scaled into Step 3 and beyond.

Additionally, considering the importance of transparency in the GDA process, the RP is required to involve the UK public in the GDA process through publication of relevant assessment documentation. To this end, the RP is required to run a website-based comment process, through which it receives and responds to public comments and questions; as well as publishing extensive GDA documentation (taking into account security and commercial sensitivities). This has been underway since the beginning of Step 2, and will continue through Step 4.

Based on the individual activities, described above that were carried out in the course of Step 2, and the corresponding regulatory conclusions above, the Regulators provided summaries of Step 2 Assessment of the UKABWR [Ref-12] [Ref-14], in which:

- ONR considered the fundamental safety and security aspects of the design, and the Environment Agency considered the environmental acceptability of the design and concluded that the UK ABWR assessment could move through the subsequent steps of the GDA process.
- And more importantly, at the end of Step 2 assessments the Regulators confirmed that the assessments did not identify any fundamental safety or security issues that might prevent issue of a DAC or that would need to be addressed in order to acquire one [Ref-12] and have not at this stage identified any matters addressed by the submission that are obviously unacceptable [Ref-14].

Step 3: Overall design, safety and security case arguments review

Step 3 involves detailed assessment of the overall design at the systems level. This includes analysis of safety cases, and the security and environment related arguments of the corresponding design, as well as assessment of Arguments related to ALARP.

The RP is also required to define the detailed technical scope of the GDA application, define a Design Reference and a Design Reference Point (DRP), and define the corresponding supporting documentation (included in the Master Document Submission List - MDSL) which would eventually be included in the DAC and/or SoDA.

UK ABWR

Generic Pre-Construction Safety Report

Revision C

To this effect, at the end of Step 2, the RP provided the regulators with initial information on Design Reference [Ref-9] and the initial Master Document Submission List (MDSL) [Ref-10]. The Design Reference is based on a Japanese ABWR design (such as [Ref-5]) which is the base for the UK ABWR. The MDSL was compiled based on the supporting documents recorded in the Step 2 Generic PCSR and its supporting documentation. The MDSL will be regularly updated to reflect and capture the latest design information.

Additionally, toward defining the Design Reference Point at the end of Step 3, the RP produced a document explaining the process it intends to follow to achieve this in the early stage of Step 3 [Ref-9].

In the course of Step 3, the regulators undertook a detailed review of the UK ABWR design, and produced RQs, ROs where additional information was necessary or where the regulators considered could be areas of potential shortfalls and required deep scrutiny at an early phase in the GDA process.

The discussions between the RP and the regulators in the course of Step 3 led to the production or revision of Level 2 documentation such as Topic Reports and Basis of Safety Cases (see section 1.3) that would underpin the claims of the UK ABWR. These along with other supporting documents have been submitted to the Regulators to assist them to carry out the necessary detailed Step 3 assessments.

Step 4: Detailed design, safety and security case assessment

Step 4 involves in-depth assessment of corresponding Evidence to demonstrate the safety of the design, as well as corresponding security and environmental arrangements. The RP is required to provide corresponding evaluation and analysis results as evidence to demonstrate that the design meets the Claims and Arguments described in the preceding Steps 2 and 3.

In the process of Step 4 planning, the RP intends to develop a programme of meetings, documentary scope etc covering the requirements described in the Guidance to Requesting Parties [Ref-1] as well as the specific technical areas that the Regulators intend to assess as recorded in their Step 4 assessment plans.

Upon successful completion of Step 4, which marks the completion of the GDA process, the RP will be issued a DAC and a SoDA from the ONR and the Environment Agency, respectively.

1.4 Structure and Contents of the UK ABWR Generic PCSR

This section provides a summary of the key aspects in the development of GDA documentation. One aspect is a summary of how the Generic documentation is structured. Another aspect is the Claim-Argument-Evidence (CAE) approach adopted in UK ABWR safety cases to ensure that interface management between the large number of documents in the different levels of the GDA documentation structure are defined (established) and linked together to achieve the construction of a consistent, coherent, and manageable safety case. Another aspect is the structure of the Generic PCSR and its contents. A further aspect explained in this section is the approach adopted to define and develop the scope of GDA. Further to the scope of GDA, this section also provides a summary on how the initial phases of the specific site scope are developed in the Generic PCSR with the aim of de-risking the site specific licensing phase.

1.4.1 PCSR Documentation

The GDA documentation is structured in levels to clearly present the overall safety cases in a consistent and coherent manner.

The overall documentation structure is divided into 3 levels as shown in Figure 1.4-1.

• Level 1 : SSE submissions

Level 1 forms the top-tier documentation and consists of the SSE submissions: The Generic PCSR, the Generic Environmental Permit (GEP) documentation and the Conceptual Security Arrangements (CSA). In the Generic PCSR, safety, security and environmental Claims of the UK ABWR design are illustrated. The high level safety Claims are developed in a way which demonstrates at a high level that the UK ABWR design meets UK safety, security and environmental requirements, and that the risks associated with the design are ALARP. The descriptions here after concentrate on the structure of the safety cases – the PCSR.

As part of creating a consistent, coherent and easy to maintain safety case, as required in ONR Nuclear Safety Technical Assessment Guide (TAG) 51 [Ref-16], the Claims in the Generic PCSR are clearly defined and linked/referenced to the corresponding supporting information in Level 2 and 3 documentation.

Hitachi-GE's Safety Case documentation consists of three types of claims : Safety Functional Claims (SFCs), Safety Properties Claims (SPCs) and Human Based Safety Claims (HBSCs). The approach adopted in development of safety cases using these claims is described in Section 1.4.2.

The structure of the Generic PCSR is described in the succeeding Section 1.4.3 Structure and Contents. On the other hand, the detailed structure and contents of the GEP documentation is shown in "Summary of the Generic Environmental Permit Applications" GA91-9901-0019-00001 (XE-GD-0094) Rev. G. The structure of Security documentation is in line with Guidance on the Security Assessment of Generic New Nuclear Reactor Designs [Ref-19] and corresponding arrangements between the Regulators and Hitachi-GE.

UK ABWR

Generic Pre-Construction Safety Report Revision C

• Level 2 : Supporting Documentation

Level 2 consists of the Arguments documentation used to support and substantiate the Claims in Level 1. Level 2 is the first level of supporting documentation and provides the linkage between Claims in Level 1 and Evidence in Level 3 documentation. These documents comprise of Topic Reports (TRs) on typical GDA assessment areas identified in the GDA Guidance [Ref-1], and Basis of Safety Cases (BSCs) reports on the Systems, Structures and Components (SSCs) of the UK ABWR design. The list of TRs and BSCs to support UK ABWR claims were determined during Step 2 assessments, and were then developed, submitted and / revised during Step 3 and 4. The present list as well as the revision status of the TRs and BSCs is shown in the latest version of the MDSL [Ref-10]. TRs and BSCs are living documents that were developed or revised further to capture technical discussions in the course of Step 4. The contents of TRs and BSCs have been consolidated with reference to the supporting information included in the MDSL in June 2017. The contents of the PCSR and BSCs/TRs have also be consolidated before the submission of PCSR Rev. C.

The TRs, and BSCs are used to capture, in totality, the key aspects claimed on the corresponding SSCs using clearly defined and uniquely numbered Claims, and create an audit trail that links or will be used link the justifying/supporting information in the lower tier documents.

Additionaly, the BSCs, and TRs also provide comprehensive information, referencing and/or pointers to detailed information on assumptions, operating limits and conditions that will not only be used in GDA but on a wider aspect as the building blocks for arrangements for moving the GDA to the operating regime in accordance with procedure for identification of Assumptions, Limits and Conditions for Operation [Ref-17].

A procedure on the standard structure and contents of the TRs, and BSCs has already been developed and used in development of BSCs and TRs [Ref-13].

• Level 3: Supporting Documentation

Level 3 includes detailed design, evaluation and analysis documentation that will be used to provide Evidence to support and substantiate the Arguments in Level 2 and demonstrate that the UK ABWR design meets the claims in Level 1. Additionally, Level 3 documentation may not be referenced in Level 1, it may include documents generated by external organisations, and in some cases such documents may be generated outside the scope of the UK ABWR GDA.

• Others: Safety Case, Project Arrangements and Procedures, and Management of Safety and Quality Assurance (MSQA) Documentation.

GDA documentation also consists of GDA Safety Case development guidelines, project arrangements and/or procedures, and Management System and Quality Assurance (MSQA) Documents created and submitted for use in the GDA project. These documents are used to support GDA submissions where referenced accordingly.

The key safety case development guidelines include:

Revision C

• Safety Case Development Plan [Ref-20]

The SCDP describes Hitachi-GE's approach to developing the Generic PCSR, and how the PCSR will change over time.

• Safety Case Development Manual (SCDM) [Ref-18]

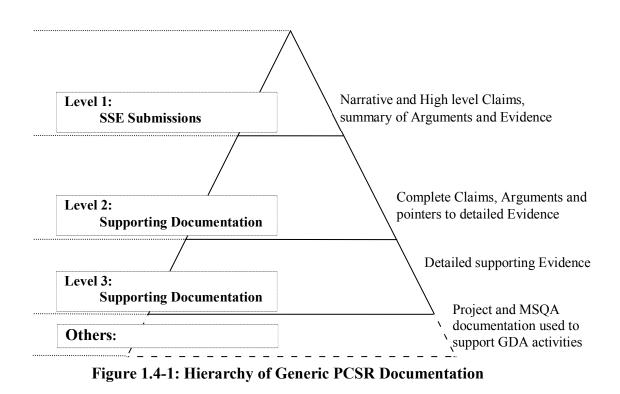
The SCDM provides Hitachi-GE's GDA safety case authors, reviewers and approvers with guidance on how to achieve a sound, well-presented safety case, which is clear, coherent and consistent.

• Nuclear Safety and Environmental Design Principles (NSEDPs) [Ref-22]

These are the high level safety and environmental principles that apply to UK ABWR, and that the design will be judged against.

• GDA ALARP Methodology [Ref-21]

This document sets out Hitachi-GE's approach to ensuring that risks have been reduced to ALARP. It provides more detailed, practical guidance than the SCDM, including a range of suggested approaches from simple qualitative methods to more detailed ranking and rating exercises.


The relevant MSQA arrangements supporting the production of safety cases are described within or through Generic PCSR Chapter 4.

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

Revision C

1.4.2 Approach to Claim-Argument-Evidence (CAE)

The Claim-Argument-Evidence (CAE) approach is commonly used in structuring safety cases in the nuclear industry and elsewhere. CAE is not mandatory for GDA or in the UK generally, but the ONR Guidance to Requesting Parties [Ref-1] supports its use.

CAE is a structured approach which aims to improve the clarity of the safety case, and make complex safety justifications more understandable. The terms Claim-Argument-Evidence can be defined as:

Claim:	High level proposition, assertion or statement
Argument:	The reason why the claim is justified
	Supports the claim and points to where the supporting evidence can be found
Evidence:	Facts and judgements that support the argument

Hitachi-GE has adopted the CAE approach (where relevant as defined in SCDM [Ref-18] Section 3) for the UK ABWR safety case, and have defined three main types of claims: Safety Functional Claims (SFCs) and Safety Properties Claims (SPCs) and Human Based Safety Claims (HBSCs):

• Safety Functional Claims (SFCs):

SFCs are actions performed by an SSC to implement a safety function (e.g. insert control rods, open a valve, start a pump). SFCs define the functional claims on SSCs that must be justified in order to demonstrate that the plant is safe.

SFCs are derived from the detailed and wide ranging fault and hazard analysis carried out to support the UK ABWR, and are justified within the Basis of Safety Case (BSC) reports that support the PCSR.

SFCs are structured and uniquely numbered to ensure that there is a robust and clear link between the SFC and the Fundamental Safety Function (FSF) that it supports. Hitachi-GE have defined the FSFs as:

- 1. Control of reactivity
- 2. Fuel cooling
- 3. Long term heat removal
- 4. Confinement/ Containment of radioactive materials
- 5. Others (largely for support functions whose support is required for one or more of the above safety functions)

Beneath each of these Fundamental Safety Functions a number of High Level Safety Functions (HLSFs) have been defined (e.g. Functions to maintain core geometry, Function to make up reactor coolant). All SFCs are uniquely numbered, with a numbering scheme that incorporates identifiers for the Fundamental Safety, the High Level Safety Function and the SSC. In this way, it is possible to link each SSC with the safety function it delivers.

• Safety Properties Claims (SPCs):

SPCs are claims which justify that the UK ABWR meets Hitachi-GE's Nuclear Safety and Environmental Design Principles (NSEDPs) [Ref-22]. While SFCs describe the functions required of an SSC in order to achieve the requirements of the safety case, SPCs are system level properties such as redundancy, diversity and environmental qualification, which can help to fulfil many different safety functions.

For this reason, SPCs are not directly linked to the HLSFs, and the HLSF number is not used as part of the unique SPC number.

1. Introduction

1.4 Structure and Contents of the UK ABWR Generic PCSR Ver. 0

Revision C

• Human Based Safety Claims (HBSCs):

HBSCs are claims on actions performed by humans to achieve safety and resilience, either in terms of maintaining normal plant state and responding to abnormal and fault events.

Further description of Hitachi-GE's approach to CAE can be found in the GDA Safety Case Development Manual (SCDM) [Ref-18], and in Chapter 5 of this PCSR.

1.4.3 Fault Fault Based and System Based View of the UK ABWR Safety Case

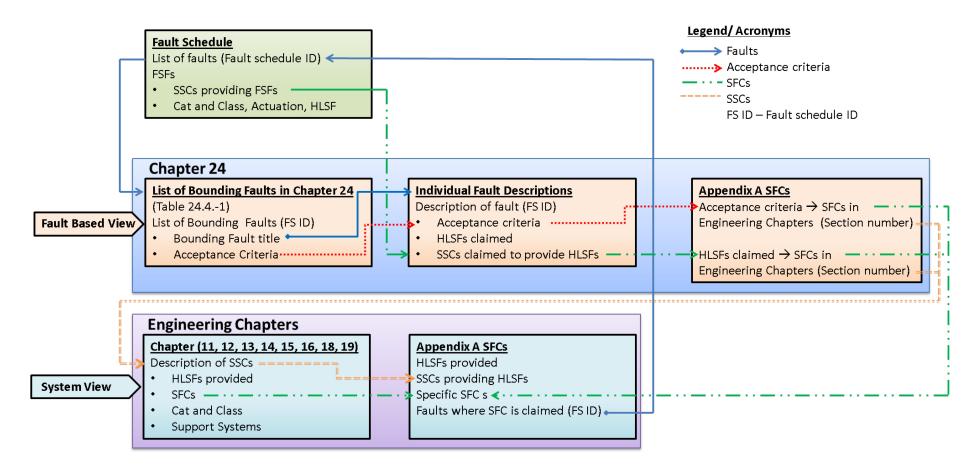
The PCSR contains the Safety Case for UK ABWR spread over a number of chapters. Engineering chapters describe the SSCs that make up the design and link through to Fault Studies, and Fault Studies links back to the engineering chapters. The links are provided by two main indexes: the SFCs on the engineering systems and the Fault Schedule ID for faults. These links enable the overall safety case to be followed through the PCSR starting from either the engineering chapters or Fault Studies. The process is shown diagrammatically in Figure 1.4-2

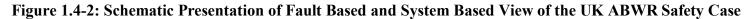
The Fault Schedule (FS) lists the faults identified for UK ABWR. Each entry has an identification number (FS ID). Chapter 24 does not describe all faults in the FS but only describes a number of bounding faults. These are shown in Table 24.4-1 with the FS ID along with the section in Chapter 24 where the description may be found and the Acceptance Criteria for the fault. The Acceptance Criteria are used to confirm that the design is tolerant to the particular bounding fault and are listed in Appendix A to Chapter 24 with a link to the specific SFC in the engineering chapters to which they relate. This link is referenced to the specific PCSR section number where the acceptance Criteria are defined and to the specific SFC in Appendix A of the relevant chapter.

Each bounding fault description in Chapter 24 identifies the HLSFs required to meet the Acceptance Criteria and the SSCs claimed in the analysis to provide those HLSFs. It also lists the faults bounded by the fault with their FS IDs. Appendix A gives a reference to the PCSR section where the SSC is described and to the specific SCF claimed and described in appendix A of the relevant chapter. The system description also describes the systems that support the claimed SSCs and the corresponding SFCs associated with them.

Thus, it is possible to start from a particular fault and trace the safety case to the engineered systems and their SFCs that are claimed to meet Acceptance Criteria.

With regard to the systems based view, the same traceability is possible through the use of HLSFs and SFCs provided in the claims tables (Appendix A). Appendix A of each chapter then gives a complete list of all faults where these SFCs are claimed along with the FS ID explained in the preceding paragraphs.


Thus, it is possible to start from a particular SSC and trace its contribution to the Safety Case by tracing where it is claimed in the fault assessment and vice versa.


Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

1. Introduction 1.4 Structure and Contents of the UK ABWR Generic PCSR Ver. 0

UK ABWR

Generic Pre-Construction Safety Report

Revision C

1.4.4 Structure and Contents

To cover all the relevant phases of the plant cycle, the Generic PCSR contents are structured and developed with consideration of the following:

- Internationally recognized practices and guides for development of Safety Reports. Such guides include:
 - IAEA Safety Guide GS-G-4.1 [Ref-3].
- Benchmarked against previous related documentation such as
 - Generic PCSRs from previous GDAs and Sizewell B Station Safety Report (SSR); US Regulatory Guide 1.206 [Ref-4];
 - Establishment Permit Application for Nuclear Reactor Installation in Kashiwazaki-Kariwa Nuclear Power Station (Addition of Unit 6 and Unit 7) [Ref-5].
- Inclusion of additional chapters to incorporate site specific and operational matters to enable transition from GDA into site specific phase.

Based on the above approach, the UK ABWR's Generic PCSR is comprised of five parts covering all aspects of the plant lifetime.

• Part-I: General Issues

Part-I sets the scene for the Generic PCSR, and describes some of the generic issues that impact on the safety of the plant (e.g. management of safety, categorisation and classification and categorisation of SSCs, definition of applicable codes and standards). This section also describes the generic site characteristics that form the basis of GDA for UK ABWR and also summarises the case that UK ABWR is resilient to internal and external hazards. Issues around Structural Integrity are also covered. Part-I comprises the following chapters:

- Chapter 1: Introduction
- Chapter 2: Generic Site Envelope
- Chapter 3: Site Characteristics (Not included in Generic PCSR)
- · Chapter 4: Safety Management Throughout Plant Lifecycle
- Chapter 5: General Design Aspects
- · Chapter 6: External Hazards
- · Chapter 7: Internal Hazards
- Chapter 8: Structural Integrity

• Part-II: Technical Systems

Part-II describes the main technical systems of the UK ABWR and summarises the main functional requirements and technical specifications of SSCs required to deliver safety functions. Part- II comprises the following chapters:

- · Chapter 9: General Description of the Unit (Facility)
- · Chapter 10: Civil Works and Structures
- Chapter 11: Reactor Core
- Chapter 12: Reactor Coolant Systems, Reactivity Control Systems and Associated
 Systems
- Chapter 13: Engineered Safety Features
- · Chapter 14: Control and Instrumentation
- · Chapter 15: Electrical Power Supplies
- · Chapter 16: Auxiliary Systems
- · Chapter 17: Steam and Power Conversion Systems

• Part-III: Systems and Processes to Support Operation, and Engineering Substantiation

Part-III defines the auxiliary and support systems that are necessary for performance of the SSCs. It also outlines processes for management of solid, liquid and gaseous radioactive materials, to protect and reduce the risks of radioactive exposure to operators, workers and the general public. The reduction of risk will also involve identification of human-machine interfaces that are important to safe operation. Part of this section will be dedicated to preliminary frameworks on emergency preparedness, which will be developed in detail during the site specific phase. Part-III comprises of the following chapters:

- Chapter 18: Radioactive Waste Management
- Chapter 19: Fuel Storage and Handling
- Chapter 20: Radiation Protection
- Chapter 21: Human Machine Interface
- · Chapter 22: Emergency Preparedness
- Chapter 23: Reactor Chemistry

• Part-IV: Assessment

Part-IV presents a summary of the wide ranging safety analysis and assessment work that has been used to confirm and inform the design of SSCs. These include, design basis analysis, probabilistic safety assessment, beyond design basis and severe accident analysis, and human factors evaluation. Furthermore, it also presents an overview of the ALARP case for UK ABWR, drawing on ALARP evaluations across the wide safety case. Part-IV comprises of the following chapters:

- Chapter 24: Design Basis Analysis
- Chapter 25: Probabilistic Safety Assessment

1. Introduction 1.4 Structure and Contents of the UK ABWR Generic PCSR Ver. 0

Form05/01

UK ABWR

Revision C

- Chapter 26: Beyond Design Basis and Severe Accident Analysis
- Chapter 27: Human Factors
- Chapter 28: ALARP Evaluation
- Part-V: Framework of Dealing with Issues Specific to Plant Life Phase Part-V describes how safety will be achieved and maintained throughout the plant's lifetime, through commissioning, operation and decommissioning, including Spent Fuel Interim Storage. Part-V comprises of the following chapters:
 - Chapter 29: Commissioning
 - Chapter 30: Operation
 - Chapter 31: Decommissioning
 - Chapter 32: Spent Fuel Interim Storage

A detailed table of contents for the whole of the Generic PCSR is presented in Chapter 0 "Generic PCSR : Master Table of Contents" in document GA91-9101-0101-00000 (XE-GD-0225) Rev. C.

While the content of each chapter is different, there are common elements that each chapter must cover (such as introduction, purpose, scope, document structure, etc.). The sub structure of each chapter has been defined to ensure consistency, and also to highlight important issues for the wider safety case such as ALARP justification, assumptions and high level limits and conditions. This generic sub structure can be summarised as:

- Introduction (including background and description of document structure)
- Purpose and Scope
- Chapter specific content*1
- Summary of ALARP Justification (for relevant topics (e.g. not for Chapter 9: General Description))
- Assumptions, Limits and Conditions for Operation (for relevant topics (e.g. not for Chapter 9: General Description))
- Document Map (showing the PCSR chapter and its key Level 2 supporting documentation)
- Table of Safety Functional Claims (SFCs) or Human Based Safety Claims (for Chapter 27) and Safety Properties Claims (SPCs) (for chapters where these have been defined)

*1. This is subdivided in to a number of sections depending on the contents of the specific PCSR chapter.

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

1.4.5 Scope

The scope of GDA is underpinned by three components:

- The Systems, Structures and Components (SSCs) to be included The extent of SSCs to be covered has been defined in line with GDA Guidance [Ref-1], and is based on a single unit at a generic site in the UK. Specifically, this includes those civil SSCs that are Safety Class 1 or 2, or Seismic Category 1 and 1A whose design is predominantly independent of the site specific conditions. These structures are listed in Generic PCSR Chapter 10. With Regard to the Systems and components, the GDA, in nature focuses on aspects of safety (for PCSR). The scope of GDA is primarily set as systems and components classified as class 1 and 2. However, as part of ensuring key aspects of lifecycle phases are covered, some of the lower class systems and components are also covered at a proportionate level of details as explained in the 'Documentation submitted' section below.
- The lifecycle phases and processes to be covered In line with GDA guidance [Ref-1] UK ABWR safety submissions cover (at an appropriate level of detail) all through-life aspects including design, manufacturing, construction, installation, testing, commissioning, operation, maintenance and decommissioning of the power station. In addition, the guidance requires the RP to identify the management arrangements for spent fuel and radioactive waste arising from operation of the reactors for their projected life.
- Documentation submitted

The third point, the scope of documents, has been developed into the Design Reference for the UK ABWR [Ref-9]. However, given that GDA is a pre-licensing process aimed at risk mitigation, it is not intended to prepare a full set of design documentation for all plant lifecycle phases at the GDA stage. Furthermore, some aspects of the design and processes require significant operator input and therefore the scope of GDA documents will be limited. It is intended that 'conceptual' design information will be presented in GDA.

The eventual detailed scope of the generic UK ABWR design will be defined by the following suite of documents:

- List of Systems, Structures, and Components for Definition of UK ABWR GDA Scope [Ref-6]
- Scope of GDA document [Ref-11]
- Master Document Submission List (MDSL) [Ref-10]

Although the Generic PCSR concentrates on the safety of the ABWR design built on a generic site, it will also include arrangements to facilitate smooth transition to a specific site specific phase. To this effect:

- Hitachi-GE and Horizon Nuclear Power (HNP who will undertake the site specific activities) have already established work streams such as multiparty discussions on scope optimization, joint workshop on Generic PCSR and Site Specific (SS) PCSR [Ref-15].
- As part of moving the GDA to the operating regime, the RP has started implementing processes for identification and capturing necessary activities and information that will eventually be transferred to the operator. For instance, the chapter level structure of the

1. Introduction 1.4 Structure and Contents of the UK ABWR Generic PCSR Ver. 0

UK ABWR

Generic Pre-Construction Safety Report Revision C

Generic PCSR has been revised to enable authors to identify if there are any assumptions, operating limits and conditions in the corresponding Generic PCSR chapters and provide a link to where the corresponding assumptions, operating limits and conditions are recorded in the corresponding Level 2 documents [Ref-17].

The eventual detailed scope of the generic UK ABWR design is listed in the List of Systems, Structures, and Components for Definition of UK ABWR GDA Scope (this document refers to the scope of a standard ABWR design) [Ref-6] and revised Scope of GDA document (this document refers to the specific scope of the UK ABWR design) [Ref-11].

With regard to the scope of the documents, a preliminary definition has been recorded in the Master Document Submission List (MDSL) [Ref-10] and a final revision of the documents [Ref-6, 10, and 11] is expected to reflect the final position, at end of the GDA process including relevant design changes agreed during GDA.

Revision C

1.5 PCSR User Guide and Route Map

Chapter 2: Generic Site Envelope

This chapter defines the Generic Site Conditions that are included within the Generic Site Envelope and will justify that the values used are robust, conservative and suitable for use in the generic design of the UK ABWR PCSR.

Chapter 3: Site Characteristics (Not included in Generic PCSR)

This chapter is not included in the Generic PCSR, and has been included to facilitate inclusion of site specific information during the site licensing phase.

Chapter 4: Safety Management throughout Plant Lifecycle

This chapter describes Hitachi-GE's generic safety management arrangements, and how these contribute to ensuring that the required levels of nuclear safety will be delivered throughout the lifetime of the UK ABWR (design, construction, commissioning, operation, and decommissioning). It describes how these safety management arrangements will support the future operator and licensee in meeting safety and environment limits and conditions, including describing the arrangements for sharing knowledge of the UK ABWR technology.

Chapter 5: General Design Aspects

Chapter 5 sets out the general principles and definitions that are used in the remainder of the PCSR, including key terminology and concepts such as Fundamental Safety Functions, High Level Safety Functions, Safety Functional Claims and Safety Properties Claims. It also describes Hitachi-GE's approach to Safety Function Categorisation and Safety Classification for SSCs. The chapter also lists the principal codes and standards used for UK ABWR and describes the principles of examination, maintenance, inspection and testing that will be applied to SSCs.

Chapter 6: External Hazards

External hazards are hazards that originate outside the site, and over which the operator has little or no control. They include natural hazards such as earthquakes, flooding and high wind; and also man made hazards such as aircraft impacts and the effects of nearby industry. Chapter 6 summarises the case that the UK ABWR will withstand external hazards without the loss of safety functions. It lists the hazards that could have an effect on safety at the plant, and demonstrates that a robust process has been used to develop this list. It also provides links to other relevant parts of the safety case that provide the justification that SSCs have been suitably designed.

Chapter 7: Internal Hazards

Internal hazards are hazards that originate on the site, and that can prevent SSCs from performing the safety functions required of them. They include such hazards as fires, explosions, flooding and dropped loads. Chapter 7 demonstrates that the risks due to internal hazards for UK ABWR have been reduced As Low As Reasonably Practicable (ALARP).

Chapter 8: Structural Integrity

Chapter 8 describes how the structural integrity of SSCs will be ensured, and summarises the evidence to substantiate the structural integrity claims made in the safety case. The chapter also

Form05/01

UK ABWR

introduces the structural integrity classifications of High Integrity (HI) and Very High Integrity (VHI) components and identifies the additional requirements for these components over and above those of "Standard" Class 1 SSCs.

Chapter 9: General Description of the Unit (Facility)

Chapter 9 describes the overall arrangement of the UK ABWR, and presents a high level summary description of the key systems, structures and components. It also provides links to the chapters in the Generic PCSR where detailed information is provided.

Chapter 10: Civil Works and Structures

Chapter 10 describes the civils structures that form the buildings and support structures of the UK ABWR, and specifies their safety and seismic classification. It demonstrates that the civil structures provide robust, passive protection to the nuclear safety related plant which are housed within or supported by these structures. It also presents the safety case claims (SFCs and SPCs) made on the civil structures and provides a link to supporting documents that present evidence that the claims are all achieved.

Chapter 11: Reactor Core

Chapter 11 describes the reactor core, and the nuclear fuel it will contain. It summarises the processes involved in fuel and core design and describes the characteristics of the initial core and equilibrium core designs. It also sets out the safety claims on the reactor core and fuel and demonstrates that there is an adequate level of confidence that the safe of operation of the fuel and core can be substantiated.

Chapter 12: Reactor Coolant Systems, Reactivity Control Systems and Associated Systems

Chapter 12 describes the reactor coolant systems and associated systems, which include the Reactor Pressure Vessel (RPV), Reactor Pressure Containment Boundary, and the Residual Heat Removal System. It also covers reactivity control systems such as the Control Rod Drive System (CRD) and the Standby Liquid Control System (SLC). It describes the various modes of operation of the systems and points to where the arguments and evidence that substantiate the safety claims on these systems are presented in supporting documents.

Chapter 13: Engineered Safety Features

Chapter 13 describes the principal engineered safety features of the UK ABWR, including the Emergency Core Cooling System (ECCS) and the Primary Containment Vessel (PCV). It lists the safety claims (SFCs and SPCs) made on the systems and specifies their safety classification. It also links to the supporting documents that substantiates that all relevant safety claims are adequately underpinned.

Chapter 14: Control and Instrumentation

Chapter 14 justifies that UK ABWR C&I Systems will operate with sufficient integrity to ensure that overall risks have been reduced ALARP. It presents an overview of the C&I architecture of the UK ABWR and describes the C&I platforms used, including the Class 1 Field Programmable Gate Array (FPGA) based system, Class 2 hard-wired backup system and the Class 3 control system, and how independence between these systems is achieved. It also lists the safety functions and properties (SFCs and SPCs) required to achieve safety, and demonstrates that the C&I systems will achieve

1. Introduction 1.5 PCSR User Guide and Route Map Ver. 0

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

these with the required level of reliability. It also describes how an appropriate design process is being followed taking into account applicable standards and the safety class of each system. **Chapter 15: Electrical Power Supplies**

Chapter 15 describes the UK ABWR Electrical Power System (EPS), and justifies that it is capable of supplying power to all of the SSCs necessary to ensure safety, during both normal and fault conditions.

Chapter 16: Auxiliary Systems

Chapter 16 covers a wide range of plant systems that help to support safe operation of the plant, including the Emergency Diesel Generators (EDGs), Heating Ventilating and Air Conditioning Systems (HVAC) and process auxiliary systems. It describes the various modes of operation of the systems and justifies that they are able to meet all relevant SFCs and SPCs.

Chapter 17: Steam and Power Conversion Systems

Chapter 17 describes the systems that are used to generate electricity, which are primarily located in the Turbine Building. These systems include the Turbine Generator, the Condenser, and the mechanical components of the Turbine Electro-Hydraulic Control Systems (EHC). It points to the supporting documentation and evidence which justifies that all of the auxiliary systems achieve the requirements placed on them by the safety case.

Chapter 18: Radioactive Waste Management

Chapter 18 identifies and describes how all the waste generated during the operational phase by the station can be safely processed, stored, and dispose of to an authorised disposal site. The designs of the majority of the radioactive waste management systems are at concept design which aligns with regulatory guidance for Generic Design Assessment (GDA), and is based on proven technology. Although at concept design stage, the design is sufficiently developed to enable a high level assessment of the risks associated with radioactive waste operations. Chapter 18 demonstrates that a viable waste management strategy is available without foreclosing specific ALARP options and that the risks associated with the design and operation of the radioactive waste management systems for the UK ABWR are capable of being reduced ALARP.

Chapter 19: Fuel Storage and Handling

This chapter gives an overview of the UK ABWR fuel route, and covers receipt of new fuel, fuel handling, Spent Fuel Pool (SFP) storage and Spent Fuel Export (SFE). It sets out the safety claims for fuel storage, handling and export, and demonstrates that risks have been reduced to ALARP, by reference to supporting Topic Reports (TRs) and Basis of Safety Case (BSC) reports.

Chapter 20: Radiation Protection

This chapter describes how radiation doses to workers and the public will be controlled, and demonstrates that exposures will be ALARP. It describes how the sources of radiation have been identified and defined, and how this source term is appropriately conservative. It summarises the protection (e.g. shielding) that has been put in place to reduce direct radiation, and also describes the arrangements for contamination control and radiation monitoring. This chapter also presents the results of detailed doses assessments that estimate potential doses to workers and members of the public, and demonstrates that they are ALARP. This chapter also considers post-accident accessibility, to ensure that the required plant areas can be safely entered in the event of a range of postulated accident scenarios.

Revision C

Chapter 21: Human Machine Interface

For the UK ABWR to operate safely, human operators must interact with engineering systems. This chapter describes the interfaces through which operators can influence nuclear safety, which include the Main Control Room (MCR), Remote Shutdown System (RSS) and local control stations around the UK ABWR. It describes the use of the Human Machine Interfaces (HMIs) in normal operation (including testing and maintenance) and in fault conditions. It goes on to justify how these systems meet all relevant safety requirements, including reliability requirements, usability requirements, and requirements from relevant codes and standards. This chapter is intimately linked with Chapter 27: Human Factors (HF) (which describes the analysis of human task performance) and Chapter 14: C&I (which describes the systems used to control nuclear safety related functions).

Chapter 22: Emergency Preparedness

This chapter provides a high level overview of the generic emergency preparedness arrangements applicable to the UK ABWR. It describes the emergency facilities, vehicles and equipment appropriate for the UK ABWR, but does not propose any specific technology, as this is a site/ operator specific decision. The chapter also outlines how the on site response organisation would interact with national, regional and local response organisations.

Chapter 23: Reactor Chemistry

Reactor chemistry influences many aspects of the plant including structural integrity, radioactive source term and off-site discharges. This chapter describes the UK ABWR chemistry regime and justifies why it is in line with relevant good practice and is optimised when considering all factors, e.g. SSC degradation mechanisms, radiological dose implications and waste management requirements.

Chapter 24: Design Basis Analysis

Chapter 24 introduces the fault studies for the UK ABWR, and describes how faults have been identified and how they have been grouped into bounding faults for detailed assessment. These bounding faults are the starting point for the UK ABWR fault schedule, which is a fundamental document for the safety case that links potential fault scenarios with the systems that protect against them. The chapter describes how the fault schedule has been developed, identifies those faults that are considered to be within the design basis, and summarises the assessment of each of the faults identified. The chapter confirms that the UK ABWR SSCs adequately protect against or mitigate the consequences of all DB faults, and that those SSC are classified appropriately.

Chapter 25: Probabilistic Safety Assessment

Probabilistic Safety Assessment (PSA) is a key tool to assess plant risks, identify potential plant vulnerabilities and inform ALARP decision making. Chapter 25 summarises the methodology and the quantification results for a full scope PSA carried out to support GDA. The scope of the PSA covers at-power operation, shutdown, spent fuel pool and other non-reactor faults. The PSA also considers external hazards and internal hazards. The chapter confirms that the relevant risk targets have largely been met. A summary is also provided on the use of PSA to support ALARP demonstration and the identification of any reasonably practicable design improvements.

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

Chapter 26: Beyond Design Basis and Severe Accident Analysis

Beyond Design Basis Analysis (BDBA) identifies and analyses events that have a lower frequency than Design Basis accidents, usually as a result of multiple failures or common cause failures of protection systems. Severe accidents are defined as those fault sequences that could potentially lead to large societal effects and a significant number of deaths off-site.

Chapter 26 extend the DB analysis of Chapter 24 to beyond design basis events and severe accidents, and provides inputs to the PSA (Chapter 25) and the emergency arrangements discussed in Chapter 22. A summary is provided on the scope, methods and results of analysis. A summary is also provided on the ALARP assessments for a number of severe accident mitigation features in the design and it concludes that these features are consistent with Relevant Good Practice.

Chapter 27: Human Factors

This chapter provides an overview of the Human Factors (HF) work that has formed an integral part of the UK ABWR GDA project. It also summarises the HF aspects of the UK ABWR safety case, describing the structure of the HF supporting documentation, and showing where greater detail on the claims, arguments and evidence is presented. The chapter introduces the Human-Based Safety Claims (HBSCs) that have been used to support the achievability of the SFCs and SPCs made throughout the Generic PCSR. It summarises the processes used to identify the specific HBSCs and demonstrate that they can be achieved. This chapter concludes that there has been, and will continue to be, adequate and timely impact of HF on the UK ABWR design, which will ensure that it supports the human performance expected in the safety case.

Chapter 28: ALARP Evaluation

Chapter 28 demonstrates that the UK ABWR meets the ALARP principle. It does this in two ways. Firstly, it describes how the UK ABWR has evolved over time and how, with each successive evolution from the earliest BWRs to the present, the design has increased the level of safety and reduced risk. Secondly, the chapter describes how the ALARP principle has been applied during the design of the UK ABWR, referring to probabilistic and optioneering studies that have been used to inform the final design.

Chapter 29: Commissioning

Commissioning is an essential process for the subsequent safe operation of a nuclear power plant and it should be carefully developed, planned and executed. Chapter 29 describes the processes that should be followed to ensure that the UK ABWR will be safely commissioned. These include principles and strategy of commissioning, the generic plan for commissioning and how the hazards and risks in different stages of commissioning will be controlled and reduced ALARP.

Chapter 30: Operation

Chapter 30 describes the generic approach to operations required for safely operating a UK ABWR. It includes discussion of principles, programmes, processes, operating arrangements, organisation, roles and responsibilities. The description of the concept of operations is necessarily generic during GDA, but it has been developed in collaboration with a potential future site licensee to ensure alignment with current UK modern nuclear industry good practice for operations.

Chapter 31: Decommissioning

Decommissioning is the last stage in the overall lifecycle of a facility, but it must be taken into account at the planning and design stages so that appropriate steps are taken to prevent or mitigate

UK ABWR

Generic Pre-Construction Safety Report

Revision C

potential decommissioning challenges and risks. This chapter demonstrates that the UK ABWR is capable of being decommissioned safely, with risks reduced ALARP.

Chapter 32: Spent Fuel Interim Storage

The spent fuel created by the UK ABWR will initially be stored in the spent fuel pool inside the reactor building. After a number of years it will be transferred to a Spent Fuel Interim Storage (SFIS) facility where it will be stored until final disposal off-site is possible. The final design of the spent fuel storage system will not be required until significantly later than GDA, and will be decided on by the future licensee. The purpose of Chapter 32 is to demonstrate how the 'concept' SFIS assumed for GDA is capable of reducing risks ALARP and confirm that a viable SFIS strategy is available to future licensees without foreclosing specific options.

The roles of each of the chapters in the PCSR, and the summaries of their contents are provided in the Executive Summaries included in each chapter.

Form05/01

UK ABWR

Generic Pre-Construction Safety Report Revision C

1.6 Safety Assessments and Achievements of the ABWR Design Prior to the UK ABWR

The ABWR design was developed based on extensive construction and operating experience of Boiling Water Reactor (BWR) plants in Japan, United States of America (USA) and Europe, and was jointly developed by the BWR suppliers with support from BWR operators. The ABWR is the only generation III+ [Ref-7] plant that has been in commercial operation for over 15 year. The design has been independently assessed, certified and /or licensed by Regulators in Japan [Ref-5], Taiwan and in the USA [Ref-8].

The first and the second ABWR plants, which are both owned and operated by the Tokyo Electric Power Company (TEPCO), were constructed at the Kashiwazaki-Kariwa Nuclear Power Station in Japan and commenced commercial operation in 1996 and in 1997, respectively. Hitachi-GE was involved in the development, design, construction, and commissioning of both of these ABWRs.

Since then, there has been two more successful ABWR design, and construction projects in Japan, both of which Hitachi-GE was engaged. There are three further ABWR plants under construction in Japan. Hitachi-GE has been engaged in the design and construction of all seven ABWR plants in Japan, and has accumulated significant experience in both design and construction of the ABWR.

Hitachi-GE is confident that the present Japanese ABWR design serves as a technical baseline, with modifications made as necessary to meet UK requirements and criteria.

Generic Pre-Construction Safety Report

Revision C

1.7 Abbreviations and Acronyms List

The commonly used terminologies, acronyms and abbreviations in the UK ABWR design and the GDA process are shown in Appendix A.

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

1.8 Conclusions

This chapter defines the top level claims of the UK ABWR design and provides an overview of the Generic PCSR and high level links to the relevant information that supports Hitachi-GE's top claim that the UK ABWR can be safety operated in the UK. It provides high level claims that underpin this top claim. Chapter 1 provides the key achievements of the UK ABWR in Steps 1, 2, 3 and 4.

This chapter provides a guide to the structure of the PCSR and provides summaries of the contents of each of the chapters. The chapter also describes the key approach adopted in the development of UK ABWR safety cases and provides references to the relevant GDA documentation.

UK ABWR

Generic Pre-Construction Safety Report

Revision C

1.9 References

- [Ref-1] ONR, "New nuclear reactors: Generic Design Assessment Guidance to Requesting Parties, ONR-GDA-GDA001" Rev. 2, June 2016.
- [Ref-2] Environment Agency, "Process and Information Document for Generic Assessment of Candidate Nuclear Power Plants" Version 2, Mar. 2013.
- [Ref-3] IAEA, "IAEA Safety Guide, Format and Content of the Safety Analysis Report for Nuclear Power Plants" No. GS-G-4.1, 2004.
- [Ref-4] NRC, "US Regulatory Guide 1.206 Combined License Applications for Nuclear Power Plant", June 2007.
- [Ref-5] Tokyo Electric Power Company, "Establishment Permit Application for Nuclear Reactor Installation in Kashiwazaki-Kariwa Nuclear Power Station (Addition of Unit 6 and Unit 7", May 1995 (available in Japanese)).
- [Ref-6] Hitachi-GE Nuclear Energy, Ltd., "List of Systems, Structures and Components for Definition of UK ABWR GDA Scope", GA91-9201-0003-00070 (XD-GD-0023) Rev. 0, 28-Mar.-2014.
- [Ref-7] Hitachi-GE Nuclear Energy, Ltd., "Advanced Boiling Water Reactor" http://www.hitachi-hgne-uk-abwr.co.uk/downloads/abwr-brochure.pdf
- [Ref-8] NRC, "Design Certification Applications for New Reactors" http://www.nrc.gov/reactors/new-reactors/design-cert/abwr.html
- [Ref-9] Hitachi-GE Nuclear Energy, Ltd., "Design Reference for UK ABWR", GA91-1104-0002-00001 (XE-GD-0178) Rev. 6, Sep. 2017.
- [Ref-10] Hitachi-GE Nuclear Energy, Ltd.,"Master Document Submission List (MDSL)", GA91-0011-0003-00001 (XE-GD-0158) Rev. 12, Sep. 2017.
- [Ref-11] Hitachi-GE Nuclear Energy, Ltd., "Scope of GDA", GA91-1104-0001-00001 (XD-GD-0033) Rev. 0, Aug. 2014
- [Ref-12] ONR, "Summary of the design assessment of Hitachi-GE Nuclear Energy's UK Advanced Boiling Water Reactor (UK ABWR)" Rev.0, Aug. 2014.
- [Ref-13] Hitachi-GE Nuclear Energy, Ltd., "Standard contents of Basis of Safety Cases and Topic Report", GA91-0512-0007-00001 (XD-GD-0030) Rev.0, June 2014.
- [Ref-14] Environment Agency, "<u>Summary report on initial assessment of Hitachi-GE Nuclear Energy</u>, <u>Ltd's UK Advanced Boiling Water Reactor</u>", LIT 10000, Aug. 2014.
- [Ref-15] Hitachi-GE Nuclear Energy, Ltd., & Horizon Nuclear Power, UK ABWR GDA Correspondance Letter "GDA Scope Optimisation", HGNE-REG-0064R, Apr. 2015.
- [Ref-16] ONR "ONR Nuclear Safety Technical Assessment Guide : The Purpose, Scope and Content of Safety Cases", NS-TAST-GD-051 Rev. 3, July 2013.

1. Introduction 1.9 References Ver. 0

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Revision C

- [Ref-17] Hitachi-GE Nuclear Energy, Ltd., "Standard Control Procedure for Identification and Registration of Assumptions, Limits and Conditions for Operation.", GA91-0512-0010-00001 (XD-GD-0042) Rev. 2, Mar. 2017.
- [Ref-18] Hitachi-GE Nuclear Energy, Ltd., "Safety Case Development Manual", GA91-0511-0006-00001 (XD-GD-0036) Rev. 3, June 2017.
- [Ref-19] Office for Civil Nuclear Security, "Guidance on the Security Assessment of Generic New Nuclear Reactor Designs", CNS-TAST-GD-007 Rev. 0, Apr. 2013.
- [Ref-20] Hitachi-GE Nuclear Energy, Ltd., "GDA Safety Case Development Plan", GA10-0511-0002-00001 (XD-GD-0018) Rev. 5, Nov. 2015.
- [Ref-21] Hitachi-GE Nuclear Energy, Ltd., "ALARP Methodology", GA10-0511-0004-00001 (XD-GD-0037), Rev. 1, Nov. 2015.
- [Ref-22] Hitachi-GE Nuclear Energy, Ltd., "UK ABWR Nuclear Safety and Environmental Design Principles (NSEDPs)", GA10-0511-0011-00001 (XD-GD-0046), Rev. 1, July 2017.

Form05/01

	Appendix A:	Abbreviations and Acronyms List	Revision C
	3D-CAD	3D-Computer Aided Design	
	3D-CAE	3D-Computer Aided Engineering	
L	A/E	Architect Engineer	
	AAC	Alternate AC	
	ABS	Absolute	
	ABWR	Advanced Boiling Water Reactor	
	AC	Alternating Current	
	AC	Atmospheric Control system	
	ACI	American Concrete Institute	
	ACIWA	AC - Independent Water Addition	
	ACoP	Accepted Code of Practice	
	ACP	Access Control Point	
	ACRS	Advisory Committee on Reactor Safety	
	ACS	Reactor / Turbine Auxiliary Control System	
	ActP	Actinide Product	
	ACU	Air Conditioning Unit	
	AD/B	Administration Building	
	ADS	Approved Dosimetry Service	
	ADS	Automatic Depressurisation System	
	AEC	Atomic Energy Commission (US, JP)	
	AEC	Atomic Energy Council (Taiwan)	
	AEC	Auxiliary Equipment Control system	
	AECC	Alternative Emergency Control Centre	
	AEOD	Office of Analysis and Evaluation of Operational Data	
	AET	Advanced Engineering Team	
	AFC	Air Fin Cooler	
	AFC	Automatic Frequency Control	
	AFIP	Automatic Fixed In-Core Probe	
	AFW	Auxiliary Feedwater	
	AHEF	Alternate Heat Exchange Facility	
	AHU	Air Handling Unit	
	AI	Aircraft Impact	
	AIA	Airplane Impact Assessment	
	AIJ	Architectural Institute of Japan	
	AISC	American Institute of Steel Construction	
	ALAP	As Low As Practicable	
	ALARA	As Low As Reasonably Achievable	
	ALARP	As Low As Reasonably Practicable	
, ,	Introduction	-	A-1

1. Introduction Appendix A Ver. 0

Form05/01

UK ABWR

Generic Pre-Construction Safety Report Revision C

<u>Appendix A:</u>	Abbreviations and Acronyms List	evision C
ALF	Automated Load Following	
ALWR	Advanced Light Water Reactor	
AM	Accident Management	
AMG	Accident Management Guidelines	
AMP	Aging Management Programme	
ANI	Alternative Nitrogen Injection System	
ANS	American Nuclear Society (US)	
ANSI	American National Standards Institute (US)	
ANT	Auxiliary Normal Transformer	
AO	Air Off Take System	
AOF	Allocation of Function	
AOFR	Allocation of Function Report	
AOO	Anticipated Operational Occurrences	
AOP	Abnormal Operating Procedure	
AOV	Air Operated Valve	
AP	Activation Product	
APC	Airplane Crash	
APD	Alarm Pocket Dosimeter	
API	American Petroleum Institute	
APLHGR	Average Planar Linear Heat Generation Rate	
APR	Automatic Power Regulator System	
APRM	Average Power Range Monitor	
ARD	Anti-Reverse Rotation Device	
ARI	Alternative Rod Insertion	
ARM	Area Radiation Monitoring System	
ARMC	Automated Rod Movement Control	
ARS	Acceleration Response Spectrum	
AS	Turbine Auxiliary Steam System	
ASCE	American Society of Civil Engineers	
ASD	Adjustable Speed Drive American Society of Heating, Kerrigerating and Air-conditioning Engineers	
ASHRAE	Inc	•
ASI	Adverse System Interactions	
ASIC	Application Specific Integrated Circuits	
ASL	Assumed System Loss	
ASME	American Society of Mechanical Engineers	
AST	Auxiliary Standby Transformer	
ASTM	American Society for Testing and Materials	
ATIP	Automatic Traversing Incore Probe	
ATLM	Automated Thermal Limit Monitor	
roduction ndix A		A-2

Appendix A Ver. 0

Form05/01

K ABWR Appendix	Generic Pre-Construction Safety Repo A: Abbreviations and Acronyms List Revisio
ATWS	Anticipated Transients Without Scram
ATWSI	Anticipated Transient Without Scram Instability
ATWT	Anticipated Transient Without Trip
AUXB	Auxiliary Boiler
AUXRP	Auxiliary Room Panel
AVR	Automatic Voltage Regulator
AWJC	Abrasive Water Jet Cutting
AWS	American Welding Society
AWWA	American Water Works Association
B&PV	Boiler and Pressure Vessel (ASME Code)
B/B	Back-up Building
BA	Breathing Air System
BA	Breathing Apparatus
BAC	Bead Activated Carbon
BAR	Baseline Human Factors Assessment Report
BAT	Best Available Technique
BBCP	Back-up Building Control Panel
BBCR	Back-up Building Control Panel Room
BBECR	Backup Building Emergency Control Room
BBEE	Backup Building Electrical Equipment
BBEE/Z	Backup Building Electrical Equipment Zone
BBG	Back-up Building Generator System
BBGFO	Back-up Building Generator Fuel Oil System
BBTS	Backup Building Transfer Switch
BCCS	Back-up Canister Cooling System
BCP	Ball Circulation Pump
BDB	Beyond Design Basis
BDBA	Beyond Design Basis Analysis/Accident/Assessment
BDL	Bottom Drain Line
BF	Boiler Feed
BFP	Boiler Feed Pump
BFPT	Boiler Feed Pump Turbine
BFW	Boiler Feedwater
BGS	British Geological Survey
BHP	Brake Horsepower
BLDG	Building
BOC	Bottom of Core
BOC htroduction endix A 0	Beginning of Cycle A-

Form05/01

<u>Appendix A</u>	: Abbreviations and Acronyms List	Revision
BOP	Balance of Plant	
BPMS	Banked Position Withdrawal Sequence	
BPU	Bypass Unit	
BPVC	Boiler and Pressure Vessel Code	
BS	British Standard	
BSC	Basis of Safety Case	
BSL	Basic Safety Level	
BSO	Basic Safety Objective	
BT	Boiling Transition	
BTC	BWR Training Centre (JP)	
BTP	Branch Technical Position	
BWR	Boiling Water Reactor	
BWROG	BWR Owners' Group (US)	
BWRT	Backwash Receiving Tank	
C&C	Categorisation & Classification	
C&I	Control and Instrumentation	
C/B	Control Building	
C/C	Cooling Coil	
CAD	Controlled Area Drain System	
CAD	Computer Aided Design	
CAE	Claim-Argument-Evidence	
CAE	Computer Aided Engineering	
CAMS	Containment Atmospheric Monitoring System	
CAP	Cargo Access Portal	
Cat	Category	
CAV	Cumulative Absolute Velocity	
CB	Circuit Breaker	
CBA	Cost Benefit Analysis	
CBC2EE/Z	Control Building Class 2 Electrical Equipment Zone	
CBEEE	Control Building Electrical Equipment	
CC	Condenser Tube Cleaning System	
CCDF	Complimentary Cumulative Distribution Failure	
CCF	Common Cause Failure	
CCFP	Conditional Containment Failure Probability	
CCI	Core-Concrete Interaction	
CCL	Cable & Conduit List	
CCS	Containment Cooling System	
CCS troduction endix A	Canister Cooling System	A-4

Form05/01

	obreviations and Acronyms List	Revision
CCTV	Closed-Circuit Television	
CCTV	Remotely controlled television	
CD	Condensate Demineraliser System	
CDA	Cask Drop Accident	
CDF	Core Damage Frequency	
CDG regulations	Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations	
CDM	Construction(Design and Management)	
CDRL	Core Damage Radiation Level	
CERT	Constant Extension Rate Test	
CET	Containment Event Tree	
CF	Condensate Filter System	
CFDW	Condensate and Feedwater System	
CFM	Core Flow Measurement Systems	
CFR	Code of Federal Regulation	
CGCS	Combustible Gas Control System	
CHF	Critical Heat Flux	
CHFR	Critical Heat Flux Ratio	
CID	Criticality Incident Detection system	
CILC	Crud Induced Localised Corrosion	
CIS	Chemical Injection System	
CIV	Combined Intermediate Valve	
CLAB	Spent Fuel Storage Facility in Switzerland	
CLI	Criteria for Limiting Impact	
СМ	Configuration Management	
CMPF	Common Mode Probabilistic Failure	
CMU	Control Room Multiplexing Unit	
CNRA	Committee on Nuclear Regulatory Activities (of the OECD-NEA)	
CNS	Civil Nuclear Security (part of the Office for Nuclear Regulation) (UK)	
СО	Condensation Oscillation	
COD	Commercial Operation Date	
COM	Communication System	
COMAH	Control of Major Accident Hazards Regulations of 1999	
CONW	Concentrated Waste System	
COPS	Containment Overpressure Protection System	
COR	Concept of Operations Report	
CORD	Chemical Oxidation Reduction Decontamination	
СР	Core Plate	
CP oduction dix A	Construction Permit (JP)	A-5

Appendix A Ver. 0

Form05/01

D

Appendix A:	Abbreviations and Acronyms List	Revision (
CP	Control Panel	
СР	Corrosion Product	
CPDP	Core Plate Differential Pressure	
CPED(A)	Chemical / Process Engineering Design (Approach)	
CPLD	Complex Programmable Logic Device	
CPM	Chief Project Manager (Hitachi-GE)	
CPR	Critical Power Ratio	
CPS	Condensate Purification System	
CPU	Central Processing Unit	
CR	Control Rod	
CRD	Control Rod Drive (System)	
CRGT	Control Rod Guide Tube	
CRO	Control Room Operator	
CRS	Control Room Supervisor	
CRT	Cathode Ray Tube	
CRUD	Chalk River Un-identified Deposit	
CS	Containment Spray	
CS	Control Switch	
CS	Computer System	
CSA	Conceptual Security Arrangements	
CSC	Company Support Centre	
CST	Condensate Storage Tank	
СТ	Cask Transporter	
СТ	Current Transformer	
СТР	Condensate Transfer Pump	
CUW	Reactor Water Clean-up System	
CV	(Turbine) Control Valve	
CVCF	Constant Voltage Constant Frequency	
CW	Circulating Water System	
CW/S	Circulating Water Structure	
CWP	Circulating Water Pump	
D/F	Diaphragm Floor	
D/P	Differential Pressure	
D/S	Dryer/Separator	
D/W	Drywell	
DA	Design Authority	
DAC	Design Acceptance Confirmation	
DAG htroduction endix A	Diverse Additional Generator	A-6

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

UK ABWR	Generic Pre-Construction Safety	Report
<u>Appendix A:</u>	: Abbreviations and Acronyms List	evision C
DAP	Duly Authorised Person	
DAS	Data Acquisition System	
DAW	Dry Active Waste	
DB	Ductbank	
dB	Decibel	
DB	Design Basis	
DBA	Design Basis Analysis, Accident, Assessment	
DBC	Design Basis Conditions	
DBE	Design Basis Event	
DBE	Design Basis Earthquake	
DBG	Double Blade Guide	
DBT	Design Basis Threat	
DC	Design Certification (US)	
DC	Direct Current	
DCD	Design Control Document (US)	
DCH	Direct Containment Heating	
DCHV	Document Control Centre HVAC System	
DCIS	Distributed Control Information System	
DCN	Design Change Notice	
DCO	Development Consent Order (UK)	
DD	Decontamination Drain	
DDF	Depth Duration Frequency	
DDFP	Diesel Driven Fire Pump	
DDN	Design Difference Notice	
DE	Decontamination System	
DECC	Department for Energy and Climate Change	
DEDP	Decommissioning Developed Principles	
DEFRA	Department for Environment, Flood & Rural Affairs	
DEGB	Double-Ended Guillotine Break	
DEPSS	Drywell Equipment and Piping Support Structure	
DER	Design and Engineering Report	
DF	Decontamination Factor	
DFC	Damaged Fuel Container	
DfD	Decontamination for Decommissioning	
DG	Diesel Generator	
DGAE	DG Air Intake And Exhaust System	
DGCW	DG Cooling Water System	
DGEE	Diesel Generator Electrical Equipment	
DGEE/Z 1. Introduction Appendix A	Emergency D/G Electrical Equipment Zone	A-7
Ver. 0		

Form05/01

Е

Generic Pre-Construction Safety Report

UK ABWR	Generic Pre-Construction Se	ıfety Report
<u>Appendix A</u>	: Abbreviations and Acronyms List	Revision C
DGFO	DG Fuel Oil System	
DGLO	DG Lubricant Oil System	
DiD	Defence in Depth	
DIV	Division	
DJR	Design Justification Report	
DMC	Digital Measurement and Control	
DOD	United States Department of Defence (US)	
DOE	United States Department of Energy (US)	
DOF	Degree of Freedom	
DOI	Dedicated Operator Interface	
DOP	Dioctyl Phthalate	
DPC	Double Packing Clearance	
DPMO	Decommissioning Project Management Organisation	
DQR	Dynamic Qualification Report	
DR	Decay Ratio	
DR	Design Reference	
DRM	Dust Radiation Monitoring System	
DRP	Design Reference Point	
DSA	Deterministic Safety Analysis	
DSEAR	Dangerous Substances and Explosive Atmospheres Regulations	
DSP	Steam Dryer, Steam Separator Pit	
DST	Deposit Source Term	
DTA	Defect Tolerance Assessment	
DTM	Digital Trip Module	
DW	Domestic Water System	
DWC	Drywell Cooling System	
DWL	Dump Water Level	
DWMF	Decommissioning Waste Management Facility	
DWMP	Decommissioning and Waste Management Plan	
DZO	Depleted Zinc Oxide	
E/C	Erosion/Corrosion	
EAB	Exclusion Area Boundary	
EBWR	Experimental Boiling Water Reactor	
EC	European Commission	
EC	Emergency Controller	
ECC	Emergency Control Centre	
ECCS	Emergency Core Cooling System	
ECLL . Introduction Ippendix A	Electric Room Combustible Loading Limit	A-8
Ver. 0		

Generic Pre-Construction Safety Report

Form05/01

UK ABWR

ADWK Generic Tre-Construction sujety Report				
	breviations and Acronyms List	Revision C		
ECP	Engineering Computer Program			
ECP	Electrochemical Corrosion Potential			
ECR	Equivalent Cladding Reacted			
EDF	Electricite de France			
EDG	Emergency Diesel Generator System			
EDG/B	Emergency Diesel Generator Building			
EDRMS	Horizon Nuclear Power Electronic Document and Records Management			
EE	Electorical Engineering			
EECW	Emergency Equipment Cooling Water System			
EEMUA	Engineering Equipment & Materials Users' Association			
EFPD	Effective Full Power Day			
EHC	Turbine Electro-Hydraulic Control System			
EIA	Environmental Impact Assessment			
EIADR	Environmental Impact Assessment for Decommissioning Regulations			
EL	Elevation			
ELEV	Elevator			
EMC	Electromagnetic Compatibility			
EMI	Electromagnetic Interference			
EMIT	Examination, Maintenance, Inspection and Testing			
EMR	Electricity Market Reform			
EMS	Essential Multiplexing System			
EN	European Norm			
EN	National Policy Statement for Energy			
ENIQ	European Network for Inspection and Qualification			
ENSREG	European Nuclear Safety Regulators Group			
EOC	End Of Cycle			
EOC	Errors of Commission			
EOEC	End of Equilibrium Cycle			
EOF	Emergency Operations Facility			
EoG	End of Generation			
EOL	End of Life			
EOP	Emergency Operating Procedure			
EOP	Main Turbine Emergency Oil Pump			
EP	Establishment Permit (JP)			
EPA	Environmental Protection Agency			
EPC	Engineering Procurement and Construction			
EPD	Electric Power Distribution System			

EPG 1. Introduction Appendix A Ver. 0

EPFM

NOT PROTECTIVELY MARKED

Elastic-Plastic Fracture Mechanics

Emergency Procedure Guideline

Form05/01

UK ABWR Generic Pre-Construction Safety Report **Appendix A: Abbreviations and Acronyms List** Revision C EPR European Pressurised Reactor (Evolutionary Power Reactor) EPRI **Electric Power Research Institute** EPS **Electrical Power System** EPU Extended Power Uprate EPZ **Emergency Planning Zone Environmental Qualification** EQ ERICP **Emergency Rod Insertion Control Panel** ERIP **Emergency Rod Insertion Panel** ERT **Emergency Response Team** ES Extraction Steam System **ESBWR** Economic Simplified Boiling Water Reactor ESF Engineered Safety Feature ESS Essential Service System ETA Event Tree Analysis EUR **European Utility Requirements EURATOM** European Atomic Energy Community EVA Extreme Value Analysis EW Early Works EXCT **Excitation System** F/D Filter-Demineraliser FA Fuel Assembly FAC Flow Accelerated Corrosion FAD Failure Assessment Diagram Fail As Is FAI FAP Funding Arrangement Plan FATT Fracture Appearance Transition Temperature FBD Function Block Diagram FC Fail Close FCC Fuel Cycle Costs FCC Fuel Cask Cleaning Facility FCI Fuel Coolant Interaction FCP Forward Control Points FCS Flammability Gas Control System Fan Coil Unit FCU FCV Flow Control Valve FCVS Filtered Containment Venting System FD Flat Display FDA 1. Introduction Final Design Approval (US)

Appendix A Ver. 0

F

Form05/01

Appendix A:	Abbreviations and Acronyms List	Revision
FDP	Funded Decommissioning Programme	
FDW	Feedwater System	
FDWC	Feedwater Control System	
FE	Foreseeable Event	
FEED	Front End Engineering and Design	
FEH	Flood Estimate Handbook	
FEI	Fe Ion Injection System	
FEM	Finite Element Method	
FEP	Front End Procurement	
FEPC	The Federation of Electric Power Companies of Japan (JP)	
FF	Fresh Fuel	
FF	Frequent Fault	
FHA	Fuel Handling Accident	
FHA	Fire Hazard Analysis	
FHD	Forced Helium Dehydration	
FHM	Fuel Handling Machine	
FID	Final Investment Decision	
FIV	Flow-Induced Vibration	
FL	Fuel Loading	
FLD	Floor Leakage Detection System	
FLR	Full-Length Rod	
FLS	Flooding System	
FLSR	Flooding System of Reactor Building	
FLSS	Flooding System of Specific Safety Facility	
FLT	Fork Lift Truck	
FMCRD	Fine Motion Control Rod Drive	
FMCRDM	Fine Motion Control Rod Drive Mechanism	
FMDC	Fine Motion Driver Cabinet	
FMEA	Failure Modes and Effects Analysis	
FMECA	Failure Modes and Effects Criticality Analysis	
FN	Ferrite Number	
FO	Fail Open	
FO	Field Operator	
FP	Fire Protection System	
FP	Fission Product	
FPC	Fire Protection Code	
FPC	Fuel Pool Cooling and Clean-up System	
FPCMs	Fuel Pool Cooling, Clean-up and Make-up Systems	
FPGA oduction dix A	Field Programmable Gate Array	A-11

Form05/01

G

Generic Pre-Construction Safety Report

U	K ABWR	Generic Pre-Construction Safe	ety Report
	<u>Appendix A:</u>	Abbreviations and Acronyms List	Revision C
	FPLG	Fusible Plug	
	FPM	Fuel Preparation Machine	
	FPR	Fuel Pool Racks	
	FPS	Freeze Protection System	
	FRS	Floor Response Spectra	
	FRT	Fault Ride Through	
	FS	Fault Study	
	FS	Fuel Support	
	FS	Field Switch	
	FSAR	Final Safety Analysis Report (US)	
	FSER	(The ABWR) Final Safety Evaluation Report (US)	
	FSF	Fundamental Safety Function(s)	
	FSM	Frequency Sensitive Mode	
	FSR	Flood Studies Report	
	FTDC	Fault-Tolerant Digital Controller	
	FV/B	Filter Vent Building	
	FVI	Fussell-Vesely Importance	
	FWH	Feedwater Heater	
	FWHD	Feedwater Heater and Drain System	
	FWLB	Feedwater Line Break	
	FWRB	Feedwater Runback	
3	GAC	Granular Activated Carbon	
	GAHV	General Administration Building HVAC System	
	GBq	Giga Becquerels	
	GC	Grid Code	
	GCS	Generator Cooling System	
	GDA	Generic Design Assessment	
	GDC	General Design Criterion (US)	
	GDF	Geological Disposal Facility	
	GDS	Generator Disconnecting Switch	
	GE	General Electric Company	
	GEH	GE Hitachi Nuclear Energy	
	GEN	Generator	
	GEP	Generic Environmental Permit	
	GEP-RSR	Generic Environmental Permit - Radioactive Substances Regulation	
	GETAB	General Electric Thermal Analysis Basis	
	GGC	Generator Gas Control System	
	GI ntroduction endix A 0	Ground Investigation	A-12
ver.	v		

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

Appendix A	A: Abbreviations and Acronyms List	Revision C
GIS	Geographical Information System	
GL	Ground Level	
GLS	Generator Load Switch	
GND	Ground	
GNF	Global Nuclear Fuel	
GP	Good Practice	
GSC	Generator Stator Cooling System	
GSC	Gland Steam Condenser	
GSE	Gland Steam Evaporator	
GSE	Generic Site Envelope	
GSE-DT	Gland Steam Evaporator Drain Tank	
GSEXH	Gland Steam Exhauster	
GSO	Generator Sealing Oil System	
GT	Generator Transformer	
GTS	Generic Technical Specifications	
HSI	Human-System Interface	
HAW	Higher Activity Radioactive Waste	
HAW	Highly Activated Waste	
HAZ	Heat-Affected Zone	
HAZID	Hazard Identification	
HAZID	Hazard Identification Study	
HAZOP	Hazard and Operability (Studies)	
HAZOP	Hazard and Operability process	
HB	House Boiler	
HB/B	House Boiler Building	
HBSC	Human Based Safety Claim	
HCU	Hydraulic Control Unit	
HCW	High Chemical Impurities Waste System	
HD	Feedwater Heater Drain System	
HDL	Hardware Description Languages	
HECW	HVAC Emergency Cooling Water System	
HELB	High-Energy Line Break	
HELSA	High-Energy Line-Separation Analysis	
HEM	Homogeneous Equilibrium Model	
HEP	Human Error Probability	
HEPA	High Efficiency Particulate Air Filter	
HEX	Heat Exchanger	
HF Introduction pendix A	Human Factors	A-13

Form05/01

Generic Pre-Construction Safety Report

Revision C

UK ABWR	Generic Pre-Construction So
	Abbreviations and Acronyms List
HFAR	Human Factors Assessment Report
HFE	Human Factors Engineering
HFF	Hollow Fibber Filter
HFI	Human Factors Integration
HFIP	Human Factors Integration Plan
HFIR	Human Factors Issues Register
HFMP	Human Factors Methodology Plan
HGC	Hydrogen Gas Cooling System
HHISO	Half Height International Standards Organization
HI	Hydrogen Iodide
HI	High Integrity
HIACS	microprocessor platform
HIC	High Integrity Containers
HIRE	Hazard Identification and Risk Evaluation
Hitachi-GE	Hitachi-GE Nuclear Energy, Ltd.
HLND	Hot Laundry Equipment
HLSF	High Level Safety Function(s)
HLW	High Level Waste
HMG	Her Majesty's Government
HMI	Human-Machine Interface
HMIS	Human Machine Interface System
HMS	Horizon Management System
HNCW	HVAC Normal Cooling Water System
HNP	Horizon Nuclear Power
HOIS	Hydrogen and Oxygen Injection System
НОТ	Heavy Oil Tank
HP	High Pressure
HPCF	High Pressure Core Flooder System
HPCI	High Pressure Core Injection
НРСР	High Pressure Condensate Pump
HPCS	High Pressure Core Spray
HPDP	High Pressure Drain Pump
HPDT	High Pressure Drain Tank
HPIN	High Pressure Nitrogen Gas Supply System
HPPD	High Pressure Pumped Drain
HP-T	High Pressure Turbine
HRA	Human Reliability Analysis
HRAR	Human Reliability Analysis Report
HS Introduction ppendix A	Heating Steam System

Appendix A Ver. 0

Form05/01

	bbreviations and Acronyms List	Revision C
HSCR	Heating Steam and Condensate Water Return System	
HSD	Hot Shower Drain	
HSE	Health and Safety Executive (UK)	
HSO	Generator Hydrogen Seal Oil System	
HSSS	Hardware/Software System Specification	
HSWA74	Health and Safety at Work etc. Act 1974	
HV	Feedwater Heater Vent System	
HVAC	Heating Ventilating and Air Conditioning System	
HVD	Miscellaneous Heater, Drain and Vent System	
HVG	High Value Gate	
HVH	Heating Ventilating Handling Unit	
HWBP	Hardwired Back-up Panel	
HWBS	Hardwired Back-up System	
HWC	Hydrogen Water Chemistry	
HWL	High Water Level	
Hx	Heat Exchanger	
Hx/B	Heat Exchanger Building	
Hx/B-E HVAC	Heat Exchanger Building Emergency HVAC	
Hx/B-N HVAC	Heat Exchanger Building Normal HVAC	
I&C	Instrumentation and Control	
IA	Instrument Air System	
IAEA	International Atomic Energy Agency	
IASCC	Irradiation Assisted Stress Corrosion Cracking	
IBC	International Bulk Container	
IBD	Interlock Block Diagram	
IC	Isolation Condenser	
IC	Intelligent Customer	
ICBM	Independent Confidence Building Measures	
ICC	Inadequate Core Cooling	
ICD	Interface Control Diagram	
ICEA	Insulated Cable Engineer Association	
ICGT	In-Core Guide Tube	
ICLP	International Commission on Radiological Protection	
ICM	In-Core Monitor	
ICMS	Integrated Construction Management System	
ICP	Instrument and Control Power Supply	
ICP	Initial Commissioning Program	
ICRP oduction dix A	International Commission on Radiological Protection	A-15

Appendix A: Abbreviations and Acronyms List

Generic Pre-Construction Safety Report

Revision C

Form05/01

UK ABWR

ICS	Integrated Control System	
IDAC	Interim Design Acceptance Confirmation	
IDCOR	Industry Degraded Core Rulemaking	
IE	Inspection and Enforcement	
IEC	International Electrotechnical Commission	
IED	Instrument Elementary Diagram	
IEEE	Institute of Electrical and Electronics Engineers	
IF	Infrequent Fault	
IFV	Independent Fuel Verifier	
IGBT	Insulated Gate Bipolar Transistor	
IGSCC	Intergranular Stress Corrosion Cracking	
IH	Internal Hazard	
IHSI	Induction Heating Stress Improvement	
ILRT	Integrated Leak Rate Test	
ILW	Intermediate Level Waste	
ILWISF	Intermediate Level Waste Interim Storage Facility	
IMS	Information Management System	
IN	Information Notice	
INL	Instrumentation Lists	
INPO	Institute of Nuclear Power Operations	
INRA	International Nuclear Regulators Association	
INSAG	International Nuclear Safety Advisory Group (IAEA)	
INSR	Independent Nuclear Safety Review	
INST	Instrumentation	
IoF	Incredibility Of Failure	
IOT	Infrequent Operational Transients	
IPB	Isolated Phase Bus	
IPC	Infrastructure Planning Commission	
IRM	Intermediate Range Monitor	
IRR	Ionising Radiations Regulations	
IRRS	Integrated Regulatory Review Service (IAEA)	
ISA	Instrument Society of America	
ISF	Intake Screen Cleaning Facility	
ISI	Inservice Inspection	
ISLOCA	Interfacing System LOCA	
ISMA	Independent Support Motion Response Spectrum Analysis	
ISO	International Organization for Standardization	
IST	Inservice Testing	
ISV roduction ndix A	Intermediate Steam Stop Valve	A-1

Appendix A Ver. 0

NOT PROTECTIVELY MARKED

-16

Form05/01

	Abbreviations and Acronyms List	Revision
ITP	Inspection and Test Plan	
ITP	Initial Test Program	
ITV	Industrial Television Facilities	
IV	Intercept Valve	
J-ABWR	Japanese Advanced Boiling Water Reactor	
J-BWROG	BWR Owners' Group (JP)	
JANTI	Japan Nuclear Technology Institute	
JEAC	Japan Electric Association Code	
JEAG	Japan Electric Association Guide	
JEC	Japanese- Electrotechnical Committee (JP)	
JEM	Japanese Electrical Manufactures (JP)	
JIS	Japanese Industrial Standard (JP)	
JNES	Japan Nuclear Energy Safety Organization (JP)	
JPO	Joint Programme Office (UK)	
JSME	The Japan Society of Mechanical Engineers	
KAG	Key Assumptions and Ground rules	
KK	Kashiwazaki-Kariwa Nuclear Power Station	
KK-6	Kashiwazaki-Kariwa Nuclear Power Station Unit 6	
КК-7	Kashiwazaki-Kariwa Nuclear Power Station Unit 7	
L/D	Lower Drywell	
LBB	Leak-Before-Break	
LCB	Local Control Box	
LCM	Low Cobalt Material	
LCO	Limiting Condition for Operation	
LCP	Local Control Panels	
LCV	Level Control Valve	
LCW	Low Chemical Impurities Waste System	
LD	Laundry Drain System	
LD	Load Driver	
LDF	Lower Drywell Flooder System	
LDS	Leak Detection System	
LED	Light Emitting Diode	
LEFM	Linear Elastic Fracture Mechanics	
LEMP	Lightning Electro-Magnetic Pulse	
LER	Licensing Event Report	
LERE troduction endix A	Licensing Event Report Evaluation	A-1

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

UK ABWK		Generic Pre-Construction Safety Report
Appendix A:	Abbreviations and Acronyms List	Revision C
LFCV	Low Flow Control Valve	
LFE	Learning from Experience	
LFSM	Limited Frequency Sensitive Mode	
LHGR	Linear Heat Generation Ratio	
LLC	Limited Liability Company	
LLI	Long Lead Item	
LLISP	Long Lead Item Safety Pack	
LLW	Low Level Waste	
LLWR	Low Level Waste Repository	
LNTP	Limited Notice To Proceed	
LO	Turbine Lubilicating Oil System	
LOCA	Loss of Coolant Accident	
LOMI	Low Oxidation State Metal Ion	
LOOP	Loss of Off-site Power	
LOPA	Loss of Power Accident	
LOT	Light Oil Tank	
LP	Low Pressure	
LPCF	Low Pressure Core Flooder	
LPCI	Low Pressure Coolant Injection	
LPCP	Low Pressure Condensate Pump	
LPCRD	Locking Piston Control Rod Drive	
LPCS	Low Pressure Core Spray	
LPDP	Low Pressure Drain Pump	
LPDT	Low Pressure Drain Tank	
LPFL	Low Pressure Core Flooder System	
LPPD	Low Pressure Pumped Drain Syster	n
LPRM	Local Power Range Monitor	
LP-T	Low Pressure Turbine	
LPT	Low Profile Transporter	
LPZ	Low Population Zone	
LRB	Licensing Review Bases	
LRF	Large Release Frequency	
LRW	Liquid Radwaste System	
LSP	Lighting and Servicing Power Supp	ly
LTA	Lead Test Assemblies	
LTNC	Low Temperature NobleChem TM	
LTP	Lower Tie Plate	
LUHS	Loss of Ultimate Heat Sink	
LV 1. Introduction Appendix A	Low Voltage	A-18

Appendix A Ver. 0

Form05/01

	: Abbreviations and Acronyms List	Revision
LVDT	Linear Variable Differential Transformers	
LWL	Low Water Level	
LWMS	Liquid Waste Management System	
LWR	Light Water Reactor	
M&TE	Measuring & Test Equipment	
M/C	Metal-Clad Switchgear	
M/D-RFP	Motor Driven Reactor Feedwater Pump	
MAAP	Modular Accident Analysis Program	
MAI	Manufacturing Acceptance Inspections	
MAM	Mobile Accident Management Facility	
MAPLHGR	Maximum Average Planar Linear Heat Generation Rate	
MBA	Misplaced Bundle Accident	
MBC	Media Briefing Centre	
MBP	Media Briefing Point and Marshalling Point	
MC	Metal Containment	
MCC	Motor Control Centre	
MCC	Main Control Console	
MCCI	Molten Core Concrete Interaction	
MCPR	Minimum Critical Power Ratio	
MCR	Main Control Room	
MCRS	Main Control Room Supervisor	
MCU	Multiplexer Control Unit	
MDEP	Multinational Design Evaluation Programme	
MDFP	Motor Driven Fire Pump	
MDMA	Multi Attribute Decision Analysis	
MD-RFP	Motor Driven Reactor Feedwater Pump	
MDSL	Master Document Submission List	
ME	Mechanical Engineering	
ME	Medium Efficiency	
MEB	NRC Mechanical Engineering Branch	
MEH	Mechanical, Electrical and HVAC	
MET	Meteorological Observation System	
MF	Multiple Failure	
MFBE	Misloaded / Mislocated Fuel Bundle Event	
MFLE	Mislocated Fuel Loading Error	
MG	Motor-Generator	
MIC	Microscopic/Conversion	
MIL ntroduction pendix A	United States Military Standard	A-19

Generic Pre-Construction Safety Report

Form05/01

UK ABWR

UKABWR	Generic Fre-Construction S	ajely Kepori
Appendix A:	Abbreviations and Acronyms List	Revision C
MLHGR	Maximum Linear Heat Generation Rate	
MMMF	Man Made Mineral Fibre	
MOFB	Mis-Oriented Fuel Bundle	
MOLF	Marine Offloading Facility	
MOP	Main Turbine Main Oil Pump	
MOP	Mechanical Over Power	
MOV	Motor Operated Valve	
MOX	Mixed Oxide	
MP	Monitoring Post	
MPC	Maximum Permissible Concentration	
MPC	Multi-Purpose Containers	
MPCWLL	Maximum Primary Containment Water Level Limit	
MPS	Missing Pellet Surface	
MRBM	Multi-Channel Rod Block Monitor	
MS	Main Steam System	
MSC	Miscellaneous Non-Radioactive Drain Transfer System	
MSF	Main Steam Flow	
MSIV	Main Steam Isolation Valve	
MSIVC	Main Steam Isolation Valve Closure	
MSL	Main Steamline	
MSL	Mean Sea Level	
MSL	Master Submission List	
MSL	Main Steam Lines	
MSLB	Main Steam Line Break	
MSLBA	Main Steam Line Break Accident	
MSQA	Management of System and Quality Assurance	
MSR	Moisture Separator Reheater	
MSR-MDT	MSR Moisture Separator Drain Tank	
MSR-1DT	MSR 1st Stage Reheater Drain Tank	
MSR-2DT	MSR 2nd Stage Reheater Drain Tank	
MSTR	Main Steam Tunnel Room	
MSV	Mean Square Voltage	
MSV	Main Stop Valve	
MSW	Miscellaneous Solid Waste System	
MTBF	Mean Time Between Failure	
MTTR	Mean Time to Repair	
MUWC	Make-up Water Condensate System	
MUWCP	Make-up Water Condensate Pumps	
MUWP 1. Introduction Appendix A	Make-up Water Purified System	A-20

Appendix A Ver. 0

Form05/01

<u>Appendix A:</u>	Abbreviations and Acronyms List	Revision
MUX	Multiplexing System	
MV	Medium Voltage	
MVA	Million Volt Amps	
MVD	Medium Voltage Distribution System	
MVDS	Modular Vault Dry Storage	
MVP	Mechanical Vacuum Pump	
MW	Megawatt	
MWTC	Miscellaneous Waste Transfer Container	
NATRASS	Nuclear Plant Advanced Transient Data Recording and Analysis Support	
NB	Nuclear Boiler System	
NB	ASME Subsection NB	
NBS	Nuclear Business Standards (Hitachi-GE)	
NC	ASME Subsection NC	
NCLL	Normal Combustible Loading Limit	
NDA	Nuclear Decommissioning Authority	
NDE	Non-destructive Examination	
NDI	Non-destructive Inspection	
NDT	Non-Destructive Testing	
NDTT	Nil Ductility Transition Temperature	
NEA	Nuclear Energy Agency (of the OECD)	
NELS	Non-Class 1E Emergency Lighting Subsystem	
NEMA	National Electrical Manufacturers Association	
NF	Nuclear Fuel	
NFIS	New Fuel Inspection Stand	
NFV	New Fuel Vault	
NG	Nuclear Grade	
NI	Nuclear Island	
NIA	Nuclear Industry Association	
NISA	Nuclear and Industrial Safety Agency (JP)	
NMCA	Noble Metal Chemical Addition	
NMIS	Noble Metal Injection System	
NMS	Neutron Monitoring System	
NNLS	Non-Class 1E Normal Lighting Subsystem	
NOD	Non-Radioactive Oil Drain	
NPAR	Nuclear Plant Aging Research	
NPB	Non-Segregated Phase Bus	
NPC	Normal Packing Clearance	
NPP troduction endix A 0	Nuclear Power Plant	A-21

Form05/01

UK ABWR

ABWR		Generic Pre-Construction Safety Report	
Appendix A: Ab	breviations and Acronyms List	Revision C	
NPS	National Policy Statement		
NPS	Nuclear Power Station		
NPSH	Net Positive Suction Head		
NRA	Nuclea Regulation Authority (JP)		

NRA	Nuclea Regulation Authority (JP)
NRC	Nuclear Regulatory Commission (US)
NRD	Miscellaneous Non-Radioactive Drain System
NRHX	Non-Regenerative Heat Exchanger
NRW	Natural Resources Wales
NSC	Nuclear Safety Committee
NSCs	Nuclear Special Cranes
NSD	Non-Radioactive Storm Drain
NSEDP	Nuclear Safety and Environmental Design Principles
NSEP	Nuclear Safety and Environmental Principles
NSF	Nuclear Spent Fuel
NSL	Nuclear Site License
NSLS	Non-Class 1E Standby Lighting Subsystems
NSOA	Nuclear Safety Operational Analysis
NSS	Nuclear Safety Systems
NSSD	Nuclear Safety Site Description
NSSS	Nuclear Steam Supply System
NSU	Neutron Source Unit
NUCAMM	Nuclear Power Plant Control Complex with Advanced Man-Machine
NUREG	Nuclear Regulatory Commission Regulation (US)
NW	Natural Water System
NWC	Normal Water Chemistry
NWL	Normal Water Level
NZO	Natural Zinc Oxide

()	۱

O&M		Operation and Maintenance
OBE		Operating Basis Earthquake
OCIS		Other C&I System
ODYN	Į	One Dimensional Dynamic Model
OECD		Organisation for Economic Co-operation and Development
OEF		Operational Experience and Feedback
OG		Off-Gas System
OGRA		Off-Gas System Rupture Accident
OI		Oxygen Injection System
OHSA	S	Occupational health and safety management system
OJEU 1. Introduction Appendix A Ver. 0		Official Journal of the European Union

Form05/01

	Abbreviations and Acronyms List	Revision C
OL	Operating License	
OLMCPR	Operating Limit Minimum Critical Power Ratio	
OLNC	On-Line NobleChem TM	
OLTC	On-load Tap Charger	
OLU	Output Logic Unit	
ONR	Office for Nuclear Regulation (UK)	
ONR (CNS)	Civil Nuclear Security (part of the Office for Nuclear Regulation) (UK)	
OPEX	Operational Experience	
OR	Operating Rule	
ORE	Operator Radiation Exposure	
OSC	Operational Support Centre	
OSHA	Occupational Safety & Health Administration	
OSR	Operational Safety Report	
OSCGS	Outer Secondary Containment Grab Sampler	
OTPS	Over Temperature Protection System	
OTS	Operating Technical Specifications	
P&D	Plumbing and Drainage System	
P&ID	Piping & Instrumentation Diagram	
P&ID	Process and Information Document for Generic Assessment of Candidate Nuclear Power Plant Design	
P/C	Power Centre	
P/E	Pneumatic-to-Electric Converter	
PAC	Plasma Arc Cutting	
PAC	Pre Application Consultation	
PADS	Tank and Equipment Pads	
PADT	Programming and Debugging Tool	
PAE	Project Application Engineering	
PAMS	Post Accident Monitoring System	
PAR	Passive Auto-catalytic Recombiner	
PASS	Post-Accident Sampling System	
РСВ	Primary Containment Boundary	
PCC	Plant Capital Costs	
PCHS	Power Cycle Heat Sink	
PCI	Pellet Cladding Interaction	
PCI	Pre-Construction Information	
PCIS	Primary Containment Isolation System	
PCmSR	Pre-Commissioning Safety Report	
PCntlS	Plant Control System	
PCS ntroduction	Process Control Systems	
ntroduction pendix A		A-23

Appendix A Ver. 0

Form05/01

UK	AB	WR	

Generic Pre-Construction Safety Report

UK ABWR	(Seneric Pre-Construction Safety Report
<u>Appendix</u>	A: Abbreviations and Acronyms List	Revision C
PCS	Plant Computer System	
PCS	Power Conversion Systems	
PCSR	Pre-Construction Safety Report	
PCT	Peak Cladding Temperature	
PCV	Primary Containment Vessel	
PCV	Pressure Control Valve	
PCVB	Primary Containment Vessel Boundar	У
PCW	Plant Chilled Water	
PDC	Principal Design Criteria	
PDDP	Pump Deck Differential Pressure	
PDS	Plant Damage State	
PED	Pressure Equipment Directive	
PEP	Project Execution Plan	
PFD	Probability of Failure per Demand	
PFD	Process Flow Diagram	
PFD	Plant Level Flat Display	
PGA	Peak Ground Acceleration	
PGC	Power Generation Costs	
PHA	Peak Horizontal Acceleration	
PHCS	Power Cycle Heat Sink	
PIE	Postulated Initiating Event	
PI/O	Process Input/Output	
PIP	Plant Investment Protection	
PLC	Programmable Logic Conrtroller	
PLR	Part-Length Rod	
PM	Preventative Maintenance	
PMF	Probable Maximum Flood	
PML	Principia Mechanica Limited	
POCO	Post Operations Clean-Out	
POS	Plant Operating States	
POSR	Pre-Operational Safety Report	
PP	Physical Protection	
PPE	Pre-Project Engineering	
PPE	Personal Protective Equipment	
PRA	Probabilistic Risk Assessment	
PRDF	Pressure Regulator Downscale Failure	
PRM	Process Radiation Monitoring System	
PRM	Power Range Monitor	
PS 1. Introduction Appendix A	Pipe Space	A-24

Appendix A Ver. 0

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

U	K ABWR Annendix A:	Generic Pre-Construction Safe	Revision C
	PS	Power Supply	
	PSA	Probabilistic Safety Analysis	
	PSA	Probabilistic Safety Assessment	
	PSD	Power Spectral Density	
	PSHA	Probabilistic Seismic Hazard Assessment	
	PSI	Pre-Service Inspection	
	PSR	Preliminary Safety Report	
	PSRI	Pre-Service Regulatory Inspection	
	PSSR	Pressure Systems Safety Regulations	
	РТ	Liquid Penetrant Test	
	PUWER	Provision and use of Work Equipment Regulations	
	PV	Pressure Vessel	
	PVC	PolyVinyl Chloride	
	PWR	Pressurized Water Reactor	
	PWST	Purified Water Storage Tank	
	РҮ	Per Year	
	QA	Quality Assurance	
	QAP	Quality Assurance Program	
	QC	Quality Control	
	QEDS	Qualified Examination Defect Size	
	QMP	Quality Management Plan	
	QMS	Quality Management System	
	R/B	Reactor Building	
	R/W	Reactor Well	
	R2P2	Reducing Risks Protecting People	
	R&A	Requirements and Assumptions	
	R&D	Research & Development	
	RACC	Rod Action Control Cabinet	
	RAW	Risk Achievement Worth	
	RBC	Reactor Building Overhead Crane	
	RBEEE	Reactor Building Emergency Electrical Equipment	
	RBEEE/Z	Reactor Building Emergency Electrical Equipment Zone	
	RC	Reactor Chemistry	
	RC	Reinforced Concrete	
	RC&IS	Rod Control & Information System	
	RCA	Radiation Controlled Area	
App	ntroduction endix A	Remote Communication Cabinet	A-25
Ver.	U		

Form05/01

Appendix A: A	Abbreviations and Acronyms List	Revision
RCCV	Reinforced Concrete Containment Vessel	
RCIC	Reactor Core Isolation Cooling System	
RCM	Reactor Coolant Makeup System	
RCM	Reliability Centred Maintenance	
RCPB	Reactor Coolant Pressure Boundary	
RCS	Reactor Coolant System	
RCTM	Requirements Compliance Tracking Matrix	
RCW	Reactor Building Cooling Water System	
RCWY	Raceway System	
RD	Radioactive Drain Transfer System	
RDCF	Reactor Depressurization Control Facility	
RECHAR	Recombiner and Ambient Temperature Charcoal Absorption	
REPPIR	Radiation (Emergency Preparedness and Public Information) Regulations	5
REPPIR2001	Radiation (Emergency Preparedness and Public Information) Regulations	5
RFC	Recirculation Flow Control System	
RFI	Radio Frequency Interference	
RFM	Refuelling Machine	
RFP	Reactor Feedwater Pump	
RFP-T	RFP Turbine	
RG	Regulatory Guide (US)	
RGP	Relevant Good Practice	
RHR	Residual Heat Removal System	
RHX	Regenerative Heat Exchanger	
RI	Regulatory Issue	
RIC	Reactor Island Complex	
RIN	Reactor Internals	
RIP	Reactor Internal Pump	
RM	Recirculation Motor	
RMC	Recirculation Motor Cooling System	
RMHX	RIP Motor Heat Exchanger	
RMISS	Recirculation Motor Inflatable Shaft Seal System	
RMP	Recirculation Motor Purge System	
RMU	Remote Multiplexing Unit	
RO	Reverse Osmosis	
RO	Regulatory Observation	
ROA	Regulatory Observation Action	
ROC	Republic of China	
ROVA	Remotely Operated Valve Assembly	
RP oduction dix A	Radiation Protection	A-2

Appendix A Ver. 0

Form05/01

Generic Pre-Construction Safety Report

U	K ABWR	Generic Pre-Construction Sa	× 1
		Abbreviations and Acronyms List	Revision C
	RP	Requesting Party	
	RPA	Radiation Protection Adviser	
	RPS	Reactor Protection System	
	RPT	Recirculation Pump Trip	
	RPV	Reactor Pressure Vessel	
	RQ	Regulatory Query	
	RRPS	Reference Rod Pull Sequence	
	RRS	Reactor Recirculation System	
	RSA	Radioactive Substances Activities	
	RSM	Rod Server Module	
	RSP	Remote Shutdown Panel	
	RSR	Radioactive Substances Regulation	
	RSS	Remote Shutdown System	
	RSSR	Remote Shutdown System Panel Room	
	RSTS	Remote Shutdown Transfer Switch	
	RSW	Reactor Shield Wall	
	RSW	Reactor Building Service Water System	
	RT	Radiographic Test	
	RTNDT	Reference Temperature For Nil Ductility Transition	
	RUHS	Reserve Ultimate Heat Sink	
	RVI	Reactor Vessel Instrument System	
	RVSS	Reactor Vessel Support Structure	
	Rw/B	Radwaste Building	
	Rw/B MCR	Radwaste Building main Control Room	
	RWA	Radioactive Waste Adviser	
	RWE	Rod Withdrawal Error	
	RWM	Rod Worth Minimizer	
	RWM	Radioactive Waste Management Limited	
	RWP	Radiation Work Permit	
S	S&PC	Steam and Power Conversion	
	S&W	Stone and Webster Engineering Company	
	S/B	Service Building	
	S/C	Suppression Chamber	
	S/P	Suppression Pool	
	SA	Station Service Air System	
	SA	Severe Accident	
	SAA	Severe Accident Analysis	
	SACF	Single Active Component Failure	
	Introduction vendix A		A-27

Appendix A Ver. 0

Form05/01

Appendix A:	Abbreviations and Acronyms List	Revision
SACS	Safety Auxiliary Control System	
SAM	Sampling System	
SAM	Process Sampling System	
SAMDA	Severe Accident Mitigation Design Alternatives	
SAMG	Severe Accident Management Guideline	
SAP	Safety Assessment Principles	
SAR	Safety Analysis Report	
SAuxP	Safety Auxiliary Panel	
SBO	Station Blackout	
SBPC	Steam Bypass and Pressure Control System	
SBWR	Simplified Boiling Water Reactor	
SC	Shutdown Cooling	
SCB	Secondary Containment Boundary	
SCC	Stress Corrosion Cracking	
SCDM	Safety Case Development Manual	
SCDP	Safety Case Development Plan	
SCF	Single Component Failure	
SCG	Startup Coordinating Group	
SCRAM	Reactor Emergency Shutdown (Safety Control Rod Insertion)	
SCRRI	Selected Control Rod Run-In	
SCSG	Safety Case Steering Group	
SCV	Secondary Containment Vessel	
SCWG	Safety Case Working Group	
SD	Smart Device	
SDC	Safety Design Criteria	
SDC	Shutdown Cooling	
SDCP	Seal Drain Collector Pump	
SDCT	Seal Drain Collection Tank	
SDD	System Design Description	
SDV	Screening Distance Value	
SECY	Office of the Secretary of the Commission	
SEP	Standby Electrical Power	
SER	Safety Evaluation Report	
SF	Spent Fuel	
SFAIRP	So far As is Reasonably Practicable	
SFC	Safety Functional Claim(s)	
SFC	System Fault Condition	
SFC	Single Failure Criterion	
SFCHG duction lix A	Spent Fuel Cask Handling Grapple	A-28

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

UK ABWR	Generic Pre-Construction Se	afety Report
<u>Appendix A</u>	: Abbreviations and Acronyms List	Revision C
SFE	Spent Fuel Export	
SFIS	Spent Fuel Interim Storage	
SFISF	Spent Fuel Interim Storage Facility	
SFP	Spent Fuel Storage Pool	
SFP	Spent Fuel Pool	
SFR	Safety Functional Requirement(s)	
SFS	Spent Fuel Storage Facility	
SGHWR	Steam Generating Heavy Water Reactor	
SGTS	Standby Gas Treatment System	
SHA	Seismic Hazard Assessment	
SHE	Standard Hydrogen Electrode	
SHEQ	Safety, Health, Environmental and Quality Management	
SI	Structural Integrity	
SIL	Safety Integrity Level	
SIM	Training Simulator	
SIT	Structural Integrity Test	
SJAE	Steam Jet Air Ejector	
SJR	Site Justification Report	
SKI	Swedish Nuclear Power Inspectorate	
SLA	Site License Application	
SLC	Standby Liquid Control System	
SLC	Site License Company	
SLD	Standby Liquid Drain	
SLG	Site Licence Grant	
SLMCPR	Safety Limit Minimum Critical Power Ratio	
SLU	Safety Logic Unit	
SMA	Seismic Margins Analysis	
SMA	Seismic Margin Assessment	
SME	Subject Matter Expert	
SMP	Software Management Plan	
SMS	Seismic Monitoring System	
SoDA	Statement of Design Acceptability	
SOE	Single Operator Error	
SOL	Solidifying System	
SOP	Severe Accident Operation	
SOP	System Operating Procedure	
SOT	System Operational Transients	
SPC	Suppression Pool Cooling	
SPC 1. Introduction Appendix A	Safety Properties Claim(s)	A-29
Ver. 0		

Appendix A: Abbreviations and Acronyms List

Generic Pre-Construction Safety Report

Revision C

Form05/01

UK ABWR

SPCU Suppression Pool Clean-up System SPD Suppression Pool Water Drainage System SPDS Safety Parameter Display System SPL Set Point List SPT Suppression Pool Water Surge Tank Suppression Pool Temperature Monitoring System SPTM SQEP Suitably Qualified and Experienced Personnel Surveillance Requirements SR SREE Safety-Related Electrical Equipment SRI Selected Rod Insertion SRM Source Range Monitor SRMS Solid Radwaste Management System SRNM Start-up Range Neutron Monitor **SROA** Safety-Related Operator Action SRP Standard Review Plan (US) SRV Safety Relief Valve **SRVN** Safety Relief Valve Nitrogen Gas Supply System SRW Solid Radwaste System SS Stainless Steel SS Spent Sludge System SS Site Specific SSA Strategic Siting Assessment SSAR (The ABWR) Standard Safety Analysis Report (US) **SSCs** Systems, Structures and Components SSE Safety, Security and Environment SSI Soil-Structure Interaction SSLC Safety System Logic and Control SSLS Class 1E Associated Standby Lighting Subsystem SSPC Steel Structures Painting Council ssPCSR site specific Pre-Construction Safety Report SSSI Site of Special Scientific Interest STC Surveillance Test Controller STPT Simulated Thermal Power Trip STR/AP Scram Time Test Recording/Analysis Panel

STR/APScram Time Test Recording.STSSewage Treatment SystemSTTPScram Time Test PanelSUMITSpectral Unit Module Initial

Switch

SW 1. Introduction Appendix A Ver. 0

SUS

NOT PROTECTIVELY MARKED

Secondary Unit Substation

A-30

Form05/01

Appendix A:	Abbreviations and Acronyms List	Revision
SW	Sea Water	
SWC	Surge Withstand Capability	
SWC	Generator Stator Winding Cooling System	
SWL	Safe Working Load	
SWMS	Solid Waste Management System	
SWSA	Solid Waste Storage Area	
SWSD	Service Water Storm Drain	
SWTC	Standard Waste Transport Container	
SWYD	Switchyard	
T&M	Test and Maintenance	
T/B	Turbine Building	
T/D-RFP	Turbine Driven Reactor Feedwater Pump	
TAF	Top of Active Fuel	
TAG	Technical Assessment Guide	
TAGSI	Technical Advisory Group on Structural Integrity	
TBC	To Be Confirmed	
TBD	A defined Plant Damage State for PSA	
TBP	Turbine Bypass System	
TBU	A defined Plant Damage State for PSA	
TBV	Turbine Bypass Valve	
ТС	Training Centre	
TC	A defined Plant Damage State for PSA	
TCF	Total Core Flow	
TCOM	Transmission Commission	
TCOM	Transmission Communication	
ТСРА	Town and Country Planning Act 1990	
TCS	Turbine Control System	
TCV	Temperature Control Valve	
TCW	Turbine Building Cooling Water System	
TCW-HEX	Turbine Building Cooling Water Heat Exchanger	
TCWP	Turbine Building Cooling Water Pump	
TD	Tornado Damper	
TDH	Total Developed Head	
TD-RFP	Turbine Driven Reactor Feedwater Pump	
TE	Temperature Element	
TEDE	Total Effective Dose Equivalent	
TEMA	Tubular Exchanger Manufacturers Association	
TEPCO ntroduction endix A	Tokyo Electric Power Company, Inc.	A-31

Form05/01

UK ABWR

Generic Pre-Construction Safety Report

U	K ABWR	Generic Pre-Construction Safety Report			
	Appendix A:	Abbreviations and Acronyms List Revi	sion C		
	TG	Top Guide			
	TG	Technical Governance			
	T-G	Turbine Generator			
	TGS	Turbine Gland Steam System			
	TGSCC	Transgranular Stress Corrosion Cracking			
	THA	Time-History Accelerographs			
	THERP	Technique for Human Error Rate Prediction			
	THISO	Third Height International Standards Organisation			
	TI	Turbine Island			
	TIP	Traversing In-Core Probe			
	TIU	Technician Interface Unit			
	TLU	Trip Logic Unit			
	TMI	Three Mile Island			
	TN	Transmission Network			
	TOC	Table of Contents			
	TOC	Top of Core			
	TOC	Total Organic Carbon			
	ТОР	Thermal Over Power			
	TOR	Tolerability of Risks From Nuclear Power Stations			
	TPRD	Turbine Plant Radioactive Drain System			
	TQUV	A defined Plant Damage State for PSA			
	TQUX	A defined Plant Damage State for PSA			
	TR	Topic Report			
	TRS	Test Response Spectra			
	TSC	Technical Support Centre			
	TSC	Technical Support Contractor			
	TSO	Transformer System Operator			
	TSV	Turbine Stop Valve			
	TSW	Turbine Building Service Water System			
	TSWP	Turbine Building Service Water Pump			
	TV	Tank Vent Treatment System			
	TVAPS	Time Varying Axial Power Shape			
	TW	A defined Plant Damage State for PSA			
U	U/D	Upper Drywell			
	UHP	Ultra High Pressure			
	UHRS	Uniform Hazard Response Spectra			
	UHS	Ultimate Heat Sink			
Ap_{I}	UHS Introduction pendix A r. 0	Uniform Hazard Spectra	-32		

Form05/01

	<u>Appendix A:</u>	: Abbreviations and Acronyms List				
	UK	United Kingdom				
	UKCIP02	UK Climate Impact Programme 2002				
	UKCP09	UK Climate Projection 2009				
	UL	Underwriters Laboratory				
	UOP	Unit Operating Procedure				
	UPS	Uninterruptible (A.C.)Power Supply				
	URD	Utility Requirements Document				
	URS	Ultimate Rupture Strength				
	US NRC	U.S. Nuclear Regulatory Commission				
	USE	Upper Shelf Energy				
	USMA	Uniform Support Motion Response Spectrum Analysis				
	UT	Ultrasonic Test				
	UT	Unit Transformer				
V&V Verification and Validation						
	V/H	Vertical to horizontal				
	VAC Vital AC Power Supply					
	VAC Volts Alternating Current					
VB Vacuum Breaker						
	VBWR Vallecitos Boiling Water Reactor					
	VDC Volts Direct Current					
	VDU	Visual Display Unit				
	VGL	Valve Gland Leakage Treatment System				
	VGS	Valve Gland Seal Water System				
	VHI	Very High Integrity				
	VHIC	Very High Integrity Component				
	VHL	Very Heavy Lift				
	VLC	Vent Line Clearing				
	VLLW	Very Low Level Waste				
	VMS	Revolving Solid Vibration Monitoring System				
	VWO	Valves-Wide-Open				
	W/W	Wetwell				
	WAC	Waste Acceptance Criteria				
	WAMH	Waste Addition and Mixing Head				
	WANO	World Association of Nuclear Operators				
	WBC	Whole Body Counter				
	WDP	Wide Display Panel				
	WENRA troduction endix A	Western European Nuclear Regulators Association	A-33			

Form05/01

UK ABWR		Generic Pre-Construction Safety Report
Appendix A: Ab	obreviations and Acronyms List	Revision C
WJP	Water Jet Peening	
WRC	Welding Research Council	
WRL	Wide Range Level	
WST	Water Storage Tank	
ZNIS	Zinc Injection System	
ZSI	Zone Selective Interlocks	