UK ABWR Generic Design Assessment

Generic PCSR : Master Table of Contents of Generic PCSR
DISCLAIMERS

Proprietary Information

This document contains proprietary information of Hitachi-GE Nuclear Energy, Ltd. (Hitachi-GE), its suppliers and subcontractors. This document and the information it contains shall not, in whole or in part, be used for any purpose other than for the Generic Design Assessment (GDA) of Hitachi-GE’s UK ABWR. This notice shall be included on any complete or partial reproduction of this document or the information it contains.

Copyright

No part of this document may be reproduced in any form, without the prior written permission of Hitachi-GE Nuclear Energy, Ltd.

Copyright (C) 2014 Hitachi-GE Nuclear Energy, Ltd. All Rights Reserved.
Master Table of Contents

PART I : GENERAL ISSUES

Chapter 1 Introduction
1.1 Introduction
1.2 Purpose of the Generic Design Assessment (GDA)
1.3 Structure and contents of the UK ABWR Generic PCSR
1.4 Safety Assessments and Achievements of the ABWR Design Prior to the
UK ABWR
1.5 Abbreviations and Acronyms List
1.6 References
 Appendix A : Abbreviations and Acronyms List

Chapter 2 Generic Site Envelope
2.1 Introduction
2.2 Scope of Generic Site Envelope
2.3 Generic Site Envelope
2.4 Conclusion
2.5 References

Chapter 3 Site Characteristics (Not Included in Generic PCSR)

Chapter 4 Safety Management throughout Plant Lifecycle
4.1 Introduction
4.2 Hitachi-GE’s Safety and Quality Philosophy
4.3 Hitachi-GE Construction Experience and Safety Record
4.4 Safety Management Framework
4.5 Safety in the Design Phase
4.6 Safety in the Construction Phase
4.7 Safety in the Commissioning Phase
4.8 Safety in the Operational Phase
4.9 Safety in the Decommissioning Phase
4.10 References
Master Table of Contents (Cont.)

Chapter 5 General Design Aspects
5.1 General Safety Design Bases
5.2 Definition of Operational Stages, Operational Conditions and Safe Shutdown Conditions of Nuclear Power Plant
5.3 Definition of Design Basis Faults and Beyond Design Basis Faults
5.4 Categorisation and Classification of Structures, Systems and Components (SSCs)
5.5 Qualification of SSCs
5.6 Applied Regulations, Code and Standards
5.7 Monitoring, Inspections and Testing

Chapter 6 External Hazards
6.1 Introduction
6.2 Interface with other Documents
6.3 Scope of this Chapter
6.4 Identification of Independent External Hazard for GDA
6.5 Identification of Combined External Hazard in GDA
6.6 High Level Safety Claims of UK ABWR for External Hazard
6.7 Treatment and General Protection

Chapter 7 Internal Hazards
7.1 General Principles
7.2 Summary of Internal Hazards Not Considered in More Detail
7.3 Protection Against Internal Fire
7.4 Protection Against Internal Flooding
7.5 Protection Against Pipe Whip and Jet Impact
7.6 Protection Against Dropped and Collapsed Loads
7.7 Protection Against Internal Missile
7.8 Protection Against Internal Explosion
7.9 References
Master Table of Contents (Cont.)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Structural Integrity</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Scope</td>
</tr>
<tr>
<td>8.3</td>
<td>Objectives</td>
</tr>
<tr>
<td>8.4</td>
<td>Safety Functional Requirements</td>
</tr>
<tr>
<td>8.5</td>
<td>Structural Integrity Classification</td>
</tr>
<tr>
<td>8.6</td>
<td>Component Safety Reports</td>
</tr>
<tr>
<td>8.7</td>
<td>Load Condition</td>
</tr>
<tr>
<td>8.8</td>
<td>Conclusion</td>
</tr>
<tr>
<td>8.9</td>
<td>References</td>
</tr>
</tbody>
</table>

PART II : TECHNICAL SYSTEMS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>General Description of the Unit (Facility)</td>
</tr>
<tr>
<td>9.1</td>
<td>Basic Technical Characteristics</td>
</tr>
<tr>
<td>9.2</td>
<td>Facility Layout</td>
</tr>
<tr>
<td>10</td>
<td>Civil Works and Structures</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>10.2</td>
<td>Scope of Structures</td>
</tr>
<tr>
<td>10.3</td>
<td>Safety Requirements and Design Principles on Civil Structures</td>
</tr>
<tr>
<td>10.4</td>
<td>Codes and Standards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Reactor Core</td>
</tr>
<tr>
<td>11.1</td>
<td>Summary Description</td>
</tr>
<tr>
<td>11.2</td>
<td>Design Basis</td>
</tr>
<tr>
<td>11.3</td>
<td>Design Description</td>
</tr>
<tr>
<td>11.4</td>
<td>Design Evaluation</td>
</tr>
<tr>
<td>11.5</td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Reactor Coolant Systems, Reactivity Control Systems and Associated Systems</td>
</tr>
<tr>
<td>12.1</td>
<td>Reactor Coolant Systems and Associated Systems</td>
</tr>
<tr>
<td>12.2</td>
<td>Reactivity Control Systems</td>
</tr>
</tbody>
</table>
Master Table of Contents (Cont.)

Chapter 13 Engineered Safety Features
- 13.1 Summary of Description of Engineered Safety Systems
- 13.2 Containment System
- 13.3 Emergency Core Cooling System

Chapter 14 Control and Instrumentation
- 14.1 Introduction
- 14.2 Safety Principles and Development Practices
- 14.3 Requirements
- 14.4 Architecture
- 14.5 Control and Instrumentation Systems
- 14.6 Sensors and Pre Processing, Actuators and Prioritisation
- 14.7 Support Systems
- 14.8 Management Systems
- 14.9 Hardware and Software Development and System Justification
- 14.10 Control and Instrumentation Security

Chapter 15 Electrical Power Supplies
- 15.1 Introduction
- 15.2 Safety Principles and Standards
- 15.3 Architecture
- 15.4 Electrical Equipment
- 15.5 Electrical Protection
- 15.6 Panel and Raceway Layout
- 15.7 Quality Assurance and Management Systems
- 15.8 Smart Devices, Software Development and System Justification

Chapter 16 Auxiliary Systems
- 16.1 Water Systems
- 16.2 Process Auxiliary Systems
- 16.3 Heating Ventilating and Air Conditioning System
- 16.4 Other Auxiliary Systems
- 16.5 Severe Accident Management Systems
Master Table of Contents (Cont.)

Chapter 17 Steam and Power Conversion Systems
17.1 Introduction
17.2 Turbine Generator
17.3 Turbine Main Steam, Turbine Auxiliary Steam and Turbine Bypass System
17.4 Extraction Steam System
17.5 Turbine Gland Steam System
17.6 Feedwater Heater Drain and Vent System
17.7 Condenser
17.8 Circulating Water System
17.9 Condensate and Feedwater System
17.10 Condensate Purification System

PART III : SYSTEMS AND PROCESSES TO SUPPORT OPERATION, AND ENGINEERING SUBSTANTIATION

Chapter 18 Radioactive Waste Management
18.1 Source Terms
18.2 Liquid Radioactive Waste Management System
18.3 Off-Gas Radioactive Waste Management System
18.4 Solid Radioactive Waste Management System

Chapter 19 Fuel Storage and Handling
19.1 Outline
19.2 New Fuel Storage
19.3 Spent Fuel Storage
19.4 Fuel Pool Cooling and Clean-up Systems
19.5 Fuel Handling Machine Related System
19.6 Reactor Building Overhead Crane
19.7 Refueling Preparation
19.8 References

Chapter 20 Radiation Protection
20.1 Introduction
20.2 Definition of Radioactive Sources
20.3 Strategy to Ensure that the Exposure is ALARP
20.4 Protection and Provisions against Direct Radiation
20.5 Protection and Provisions against Radioactive Contamination
20.6 Radiation and Contamination Monitoring of Occupational Radiation Exposure
20.7 Dose Assessment for Public from Direct Radiation
20.8 Post Accident Accessibility
Master Table of Contents (Cont.)

Chapter 21 Human-Machine Interface
21.1 Introduction
21.2 Design Policy
21.3 Main Control Room
21.4 Remote Shutdown System
21.5 Backup Building
21.6 Radioactive Waste Facilities

Chapter 22 Emergency Preparedness
22.1 Introduction
22.2 General Requirements
22.3 Emergency Response
22.4 Emergency Facilities
22.5 Conclusion
22.6 References

Chapter 23 Reactor Chemistry
23.1 Introduction
23.2 Primary System Water Chemistry
23.3 Spent Fuel Pool Water Chemistry
23.4 Component Cooling Water Chemistry
23.5 Suppression Pool Water Chemistry
23.6 Stand-by Liquid Control System
23.7 Make-Up Water System and Condensate Storage Tank
23.8 Off-Gas System
23.9 Flammability Risk Control System
23.10 Sampling and Monitoring System
23.11 Chemistry and Radiochemistry Limits and Conditions
23.12 References

PART IV : ASSESSMENT

Chapter 24 Design Basis Analysis
24.1 Fault Assessment Approach
24.2 Fault Identification and Fault Grouping
24.3 Fault Schedule
24.4 Design Basis Analysis for UK ABWR
24.5 Conclusion
Master Table of Contents (Cont.)

Chapter 25 Probabilistic Safety Assessment
25.1 Introduction
25.2 PSA Study Approach for UK ABWR
25.3 Level 1 PSA
25.4 Level 2 PSA
25.5 Level 3 PSA
25.6 Shutdown PSA
25.7 PSA on Spent Fuel Pool
25.8 PSA on Internal Hazards
25.9 PSA on External Hazards
25.10 Severe Accident Analysis
25.11 Interpretation of PSA Results
25.12 Reference
 Appendix A : PSA for Hitachi-GE Standard ABWR Design

Chapter 26 Beyond Design Basis and Severe Accident Analysis
26.1 Introduction
26.2 Beyond Design Basis Analysis
26.3 Severe Accident Analysis
26.4 Conclusion

Chapter 27 Human Factors
27.1 Introduction
27.2 UK ABWR Integrated Human Factors Programme
27.3 Summary of Preliminary Human Factors Activity
27.4 Human Factors in GDA: Summary of Activities and Results
27.5 Substantiation of Human-Based Safety Claims
27.6 Conclusion
27.7 References
 Appendix A : Preliminary Level 3 Human-Based Safety Claims Schedule
Master Table of Contents (Cont.)

Chapter 28 ALARP Evaluation
28.1 Introduction of ALARP
28.2 Development of the Standard ABWR
28.3 Development of ABWR after Kashiwazaki-Kariwa units 6 and 7
28.4 Response to the Fukushima Accident
28.5 Strategy for the Demonstration of ALARP in GDA
28.6 Conclusions
28.7 References

PART V : FRAMEWORK OF DEALING WITH ISSUES SPECIFIC TO PLANT LIFE PHASE

Chapter 29 Commissioning
29.1 Commissioning Program Basis
29.2 Commissioning Program Requirements
29.3 Commissioning Program Objectives
29.4 Commissioning Program Organization
29.5 Conduct of Commissioning
29.6 Commissioning Program Schedule
29.7 Commissioning Program Test Summaries

Chapter 30 Operation
30.1 Introduction
30.2 Operation
30.3 Conclusion
30.4 References

Chapter 31 Decommissioning
31.1 Introduction and Objectives
31.2 UK Guidance and Legislation for Decommissioning
31.3 Decommissioning Principles Underpinning the UK ABWR Design
31.4 Decommissioning Plans for the UK ABWR
31.5 Decommissioning Logistics for One UK ABWR Unit
31.6 Timings for Decommissioning the UK ABWR
31.7 Hazards and Challenges in Decommissioning the UK ABWR
31.8 Disposability Assessment and Decommissioning
31.9 Knowledge Management for Decommissioning
31.10 Next Steps for Decommissioning
31.11 References
Chapter 32 Spent Fuel Interim Storage

32.1 Introduction
32.2 Safety Requirements
32.3 Basic Functional Requirements
32.4 Design Assumptions
32.5 Potential Interim Storage Processes
32.6 Optioneering Process for Selecting Suitable Storage Process
32.7 Evaluation Parameters
32.8 Compliance with Regulations
32.9 Conclusion
32.10 References